174 resultados para Covariance matrix
Resumo:
Single-symbol maximum likelihood (ML) decodable distributed orthogonal space-time block codes (DOST- BCs) have been introduced recently for cooperative networks and an upper-bound on the maximal rate of such codes along with code constructions has been presented. In this paper, we introduce a new class of distributed space-time block codes (DSTBCs) called semi-orthogonal precoded distributed single-symbol decodable space-time block codes (Semi-SSD-PDSTBCs) wherein, the source performs preceding on the information symbols before transmitting it to all the relays. A set of necessary and sufficient conditions on the relay matrices for the existence of semi-SSD- PDSTBCs is proved. It is shown that the DOSTBCs are a special case of semi-SSD-PDSTBCs. A subset of semi-SSD-PDSTBCs having diagonal covariance matrix at the destination is studied and an upper bound on the maximal rate of such codes is derived. The bounds obtained are approximately twice larger than that of the DOSTBCs. A systematic construction of Semi- SSD-PDSTBCs is presented when the number of relays K ges 4 and the constructed codes are shown to have higher rates than that of DOSTBCs.
Resumo:
Four algorithms, all variants of Simultaneous Perturbation Stochastic Approximation (SPSA), are proposed. The original one-measurement SPSA uses an estimate of the gradient of objective function L containing an additional bias term not seen in two-measurement SPSA. As a result, the asymptotic covariance matrix of the iterate convergence process has a bias term. We propose a one-measurement algorithm that eliminates this bias, and has asymptotic convergence properties making for easier comparison with the two-measurement SPSA. The algorithm, under certain conditions, outperforms both forms of SPSA with the only overhead being the storage of a single measurement. We also propose a similar algorithm that uses perturbations obtained from normalized Hadamard matrices. The convergence w.p. 1 of both algorithms is established. We extend measurement reuse to design two second-order SPSA algorithms and sketch the convergence analysis. Finally, we present simulation results on an illustrative minimization problem.
Resumo:
A method of source localization in shallow water, based on subspace concept, is described. It is shown that a vector representing the source in the image space spanned by the direction vectors of the source images is orthogonal to the noise eigenspace of the covariance matrix. Computer simulation has shown that a horizontal array of eight sensors can accurately localize one or more uncorrelated sources in shallow water dominated by multipath propagation.
Relationship between the controllability grammian and closed-loop eigenvalues: the single input case
Resumo:
The controllability grammian is important in many control applications. Given a set of closed-loop eigenvalues the corresponding controllability grammian can be obtained by computing the controller which assigns the eigenvalues and then by solving the Lyapunov equation that defines the grammian. The relationship between the controllability grammian, resulting from state feedback, and the closed-loop eigenvalues of a single input linear time invariant (LTI) system is obtained. The proposed methodology does not require the computation of the controller that assigns the specified eigenvalues. The closed-loop system matrix is obtained from the knowledge of the open-loop system matrix, control influence matrix and the specified closed-loop eigenvalues. Knowing the closed-loop system matrix, the grammian is then obtained from the solution of the Lyapunov equation that defines it. Finally the proposed idea is extended to find the state covariance matrix for a specified set of closed-loop eigenvalues (without computing the controller), due to impulsive input in the disturbance channel and to solve the eigenvalue assignment problem for the single input case.
Resumo:
We propose F-norm of the cross-correlation part of the array covariance matrix as a measure of correlation between the impinging signals and study the performance of different decorrelation methods in the broadband case using this measure. We first show that dimensionality of the composite signal subspace, defined as the number of significant eigenvectors of the source sample covariance matrix, collapses in the presence of multipath and the spatial smoothing recovers this dimensionality. Using an upper bound on the proposed measure, we then study the decorrelation of the broadband signals with spatial smoothing and the effect of spacing and directions of the sources on the rate of decorrelation with progressive smoothing. Next, we introduce a weighted smoothing method based on Toeplitz-block-Toeplitz (TBT) structuring of the data covariance matrix which decorrelates the signals much faster than the spatial smoothing. Computer simulations are included to demonstrate the performance of the two methods.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.
Resumo:
The statistical performance analysis of ESPRIT, root-MUSIC, minimum-norm methods for direction estimation, due to finite data perturbations, using the modified spatially smoothed covariance matrix, is developed. Expressions for the mean-squared error in the direction estimates are derived based on a common framework. Based on the analysis, the use of the modified smoothed covariance matrix improves the performance of the methods when the sources are fully correlated. Also, the performance is better even when the number of subarrays is large unlike in the case of the conventionally smoothed covariance matrix. However, the performance for uncorrelated sources deteriorates due to an artificial correlation introduced by the modified smoothing. The theoretical expressions are validated using extensive simulations. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.
Resumo:
Most of the existing WCET estimation methods directly estimate execution time, ET, in cycles. We propose to study ET as a product of two factors, ET = IC * CPI, where IC is instruction count and CPI is cycles per instruction. Considering directly the estimation of ET may lead to a highly pessimistic estimate since implicitly these methods may be using worst case IC and worst case CPI. We hypothesize that there exists a functional relationship between CPI and IC such that CPI=f(IC). This is ascertained by computing the covariance matrix and studying the scatter plots of CPI versus IC. IC and CPI values are obtained by running benchmarks with a large number of inputs using the cycle accurate architectural simulator, Simplescalar on two different architectures. It is shown that the benchmarks can be grouped into different classes based on the CPI versus IC relationship. For some benchmarks like FFT, FIR etc., both IC and CPI are almost a constant irrespective of the input. There are other benchmarks that exhibit a direct or an inverse relationship between CPI and IC. In such a case, one can predict CPI for a given IC as CPI=f(IC). We derive the theoretical worst case IC for a program, denoted as SWIC, using integer linear programming(ILP) and estimate WCET as SWIC*f(SWIC). However, if CPI decreases sharply with IC then measured maximum cycles is observed to be a better estimate. For certain other benchmarks, it is observed that the CPI versus IC relationship is either random or CPI remains constant with varying IC. In such cases, WCET is estimated as the product of SWIC and measured maximum CPI. It is observed that use of the proposed method results in tighter WCET estimates than Chronos, a static WCET analyzer, for most benchmarks for the two architectures considered in this paper.
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
We propose a novel space-time descriptor for region-based tracking which is very concise and efficient. The regions represented by covariance matrices within a temporal fragment, are used to estimate this space-time descriptor which we call the Eigenprofiles(EP). EP so obtained is used in estimating the Covariance Matrix of features over spatio-temporal fragments. The Second Order Statistics of spatio-temporal fragments form our target model which can be adapted for variations across the video. The model being concise also allows the use of multiple spatially overlapping fragments to represent the target. We demonstrate good tracking results on very challenging datasets, shot under insufficient illumination conditions.
Resumo:
This paper considers the problem of channel estimation at the transmitter in a spatial multiplexing-based Time Division Duplex (TDD) Multiple Input Multiple Output (MIMO) system with perfect CSIR. A novel channel-dependent Reverse Channel Training (RCT) sequence is proposed, using which the transmitter estimates the beamforming vectors for forward link data transmission. This training sequence is designed based on the following two metrics: (i) a capacity lower bound, and (ii) the mean square error in the estimate. The performance of the proposed training scheme is analyzed and is shown to significantly outperform the conventional orthogonal RCT sequence. Also, in the case where the transmitter uses water-filling power allocation for data transmission, a novel RCT sequence is proposed and optimized with respect to the MSE in estimating the transmit covariance matrix.
Resumo:
A new representation of spatio-temporal random processes is proposed in this work. In practical applications, such processes are used to model velocity fields, temperature distributions, response of vibrating systems, to name a few. Finding an efficient representation for any random process leads to encapsulation of information which makes it more convenient for a practical implementations, for instance, in a computational mechanics problem. For a single-parameter process such as spatial or temporal process, the eigenvalue decomposition of the covariance matrix leads to the well-known Karhunen-Loeve (KL) decomposition. However, for multiparameter processes such as a spatio-temporal process, the covariance function itself can be defined in multiple ways. Here the process is assumed to be measured at a finite set of spatial locations and a finite number of time instants. Then the spatial covariance matrix at different time instants are considered to define the covariance of the process. This set of square, symmetric, positive semi-definite matrices is then represented as a third-order tensor. A suitable decomposition of this tensor can identify the dominant components of the process, and these components are then used to define a closed-form representation of the process. The procedure is analogous to the KL decomposition for a single-parameter process, however, the decompositions and interpretations vary significantly. The tensor decompositions are successfully applied on (i) a heat conduction problem, (ii) a vibration problem, and (iii) a covariance function taken from the literature that was fitted to model a measured wind velocity data. It is observed that the proposed representation provides an efficient approximation to some processes. Furthermore, a comparison with KL decomposition showed that the proposed method is computationally cheaper than the KL, both in terms of computer memory and execution time.
Resumo:
In this paper, we consider decode-and-forward (DF) relay beamforming for secrecy with cooperative jamming (CJ) in the presence of multiple eavesdroppers. The communication between a source-destination pair is aided by a multiple-input multiple-output (MIMO) relay. The source has one transmit antenna and the destination and eavesdroppers have one receive antenna each. The source and the MIMO relay are constrained with powers P-S and P-R, respectively. We relax the rank-1 constraint on the signal beamforming matrix and transform the secrecy rate max-min optimization problem to a single maximization problem, which is solved by semidefinite programming techniques. We obtain the optimum source power, signal relay weights, and jamming covariance matrix. We show that the solution of the rank-relaxed optimization problem has rank-1. Numerical results show that CJ can improve the secrecy rate.