28 resultados para Cooperative marketing of farm produce
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.
Resumo:
A cooperative game played in a sequential manner by a pair of learning automata is investigated in this paper. The automata operate in an unknown random environment which gives a common pay-off to the automata. Necessary and sufficient conditions on the functions in the reinforcement scheme are given for absolute monotonicity which enables the expected pay-off to be monotonically increasing in any arbitrary environment. As each participating automaton operates with no information regarding the other partner, the results of the paper are relevant to decentralized control.
Resumo:
Formation of high value procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions, where suppliers are intelligent and rational agents who act strategically. In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged We model the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a stable and fair manner We first investigate the stability of such networks by examining the conditions under which the core of the game is non-empty. We then present a protocol, based on the extensive form game realization of the core, for forming such networks so that the resulting network is stable. We also mention a key result when the Shapley value is applied as a solution concept.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.
Resumo:
In many cases, a mobile user has the option of connecting to one of several IEEE 802.11 access points (APs),each using an independent channel. User throughput in each AP is determined by the number of other users as well as the frame size and physical rate being used. We consider the scenario where users could multihome, i.e., split their traffic amongst all the available APs, based on the throughput they obtain and the price charged. Thus, they are involved in a non-cooperative game with each other. We convert the problem into a fluid model and show that under a pricing scheme, which we call the cost price mechanism, the total system throughput is maximized,i.e., the system suffers no loss of efficiency due to selfish dynamics. We also study the case where the Internet Service Provider (ISP) could charge prices greater than that of the cost price mechanism. We show that even in this case multihoming outperforms unihoming, both in terms of throughput as well as profit to the ISP.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.
Resumo:
The interactions of benzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-24-crown-8 with 2,3-dichloro-5,6-dicyano- 1,4-benzoquinone have been studied in methylene chloride by using spectroscopic methods. These crown ethers from 1:l molecular complexes with the acceptor. The magnitudes of association constants and thermodynamic parameters of complexation are indicative of cooperative interaction of oxygens with the acceptor.
Resumo:
Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.
Resumo:
The interaction of benzo-15-crown-5, dibenzo-18-crown-6 and dibenzo-24-crown-8 with 2-dicyanoethylene 1,3-indane dione in CH2Cl2 has been described in terms of the formation of 1 : 1 molecular complexes. The magnitude of association constants and thermodynamic parameters indicate cooperative interactions of oxygens with the acceptors. The 1H and 13C NMR spectra of the complexes show that gyama-gyama interactions are a major source of ground state stabilization in these complexes.
Resumo:
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.
Resumo:
Three toxins, abrin-I, -II, and -III, and two agglutinins, APA-I and -II, were purified from the seeds of Abrus precatorius by lactamyl-Sepharose affinity chromatography followed by gel filtration and DEAE-Sephacel column chromatography. abrin-I did not bind on DEAE-Sephacel column chromatography and the bound abrin-II, abrin-III, APA-I, and APA-II were eluted with a sodium acetate gradient. The identity of each protein was established by sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The relative molecular weights are abrin-I, 64,000; abrin-II and abrin-III, 63,000 each: APA-I, 130,000; and APA-II, 128,000. Isoelectric focusing revealed microheterogeneity due to the presence of isoforms in each protein. Toxicity and binding studies further confirmed the differences among the lectins. The time course of inhibition of protein synthesis in thymocytes by the toxins showed lag times of 78, 61, and 72 min with Ki's of 0.55, 0.99, and 0.74 ms−1 at a 0.63 nImage concentration of each of abrin-I, -II, and -III, respectively. A Scatchard plot obtained from the equilibrium measurement for the lectins binding to lactamyl-Sepharose beads showed nonlinearity, indicating a cooperative mode of binding which was not observed for APA-I binding to Sepharose 4B beads. Further, by the criterion of the isoelectric focusing profile, it was shown that the least toxic abrin-I and the highly toxic abrin-II isolated by lactamyl-Sepharose chromatography were not retained on a low-affinity Sepharose 4B matrix, which signifies the necessity of using a high-affinity matrix for the purification of the lectins.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylates have been analyzed to determine the role of different functional groups on the molecular geometry, conformational characteristics and the packing of these molecules in the crystal lattice. Out of these the para fluoro substituted compound on the aryl ring exhibits conformational polymorphism, due to the different conformation of the ester moiety. This behaviour has been characterized using both powder and single-crystal X-ray diffraction, optical microscopy and differential scanning calorimetry performed on both these polymorphs. The compounds pack via the cooperative interplay of strong N-H center dot center dot center dot O=C intermolecular dimers and chains forming a sheet like structure. In addition, weak C-H center dot center dot center dot O=C and C-H center dot center dot center dot pi interactions impart additional stability to the crystal packing.
Resumo:
Investigations of the pore expansion in mesoporous silica in the presence of n-alkanes suggest a cooperative organization of the surfactant and alkane molecules, involving additivity of chain lengths.