34 resultados para Cognitive Style
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
In this paper, an achievable rate region for the three-user discrete memoryless interference channel with asymmetric transmitter cooperation is derived. The three-user channel facilitates different ways of message sharing between the transmitters. We introduce a manner of noncausal (genie aided) unidirectional message-sharing, which we term cumulative message sharing. We consider receivers with predetermined decoding capabilities, and define a cognitive interference channel. We then derive an achievable rate region for this channel by employing a coding scheme which is a combination of superposition and Gel'fand-Pinsker coding techniques.
Resumo:
In this paper, we introduce the three-user cognitive radio channels with asymmetric transmitter cooperation, and derive achievable rate regions under several scenarios depending on the type of cooperation and decoding capability at the receivers. Two of the most natural cooperation mechanisms for the three-user channel are considered here: cumulative message sharing (CMS) and primary-only message sharing (PMS). In addition to the message sharing mechanism, the achievable rate region is critically dependent on the decoding capability at the receivers. Here, we consider two scenarios for the decoding capability, and derive an achievable rate region for each one of them by employing a combination of superposition and Gel'fand-Pinsker coding techniques. Finally, to provide a numerical example, we consider the Gaussian channel model to plot the rate regions. In terms of achievable rates, CMS turns out to be a better scheme than PMS. However, the practical aspects of implementing such message-sharing schemes remain to be investigated.
Resumo:
A novel system for recognition of handprinted alphanumeric characters has been developed and tested. The system can be employed for recognition of either the alphabet or the numeral by contextually switching on to the corresponding branch of the recognition algorithm. The two major components of the system are the multistage feature extractor and the decision logic tree-type catagorizer. The importance of ldquogoodrdquo features over sophistication in the classification procedures was recognized, and the feature extractor is designed to extract features based on a variety of topological, morphological and similar properties. An information feedback path is provided between the decision logic and the feature extractor units to facilitate an interleaved or recursive mode of operation. This ensures that only those features essential to the recognition of a particular sample are extracted each time. Test implementation has demonstrated the reliability of the system in recognizing a variety of handprinted alphanumeric characters with close to 100% accuracy.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
This paper considers the problem of spectrum sensing, i.e., the detection of whether or not a primary user is transmitting data by a cognitive radio. The Bayesian framework is adopted, with the performance measure being the probability of detection error. A decentralized setup, where N sensors use M observations each to arrive at individual decisions that are combined at a fusion center to form the overall decision is considered. The unknown fading channel between the primary sensor and the cognitive radios makes the individual decision rule computationally complex, hence, a generalized likelihood ratio test (GLRT)-based approach is adopted. Analysis of the probabilities of false alarm and miss detection of the proposed method reveals that the error exponent with respect to M is zero. Also, the fusion of N individual decisions offers a diversity advantage, similar to diversity reception in communication systems, and a tight bound on the error exponent is presented. Through an analysis in the low power regime, the number of observations needed as a function of received power, to achieve a given probability of error is determined. Monte-Carlo simulations confirm the accuracy of the analysis.
Resumo:
The issue of dynamic spectrum scene analysis in any cognitive radio network becomes extremely complex when low probability of intercept, spread spectrum systems are present in environment. The detection and estimation become more complex if frequency hopping spread spectrum is adaptive in nature. In this paper, we propose two phase approach for detection and estimation of frequency hoping signals. Polyphase filter bank has been proposed as the architecture of choice for detection phase to efficiently detect the presence of frequency hopping signal. Based on the modeling of frequency hopping signal it can be shown that parametric methods of line spectral analysis are well suited for estimation of frequency hopping signals if the issues of order estimation and time localization are resolved. An algorithm using line spectra parameter estimation and wavelet based transient detection has been proposed which resolves above issues in computationally efficient manner suitable for implementation in cognitive radio. The simulations show promising results proving that adaptive frequency hopping signals can be detected and demodulated in a non cooperative context, even at a very low signal to noise ratio in real time.
Resumo:
In this paper cognitive science is defined as the study of intelligence as a computational process. The several disciplines which contribute to the study of cognitive science are briefly described so as to glean a birds-eye view of the subject of cognitive science.
Resumo:
Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.
Resumo:
We consider precoding strategies at the secondary base station (SBS) in a cognitive radio network with interference constraints at the primary users (PUs). Precoding strategies at the SBS which satisfy interference constraints at the PUs in cognitive radio networks have not been adequately addressed in the literature so far. In this paper, we consider two scenarios: i) when the primary base station (PBS) data is not available at SBS, and ii) when the PBS data is made available at the SBS. We derive the optimum MMSE and Tomlinson-Harashima precoding (THP) matrix Alters at the SBS which satisfy the interference constraints at the PUs for the former case. For the latter case, we propose a precoding scheme at the SBS which performs pre-cancellation of the PBS data, followed by THP on the pre-cancelled data. The optimum precoding matrix filters are computed through an iterative search. To illustrate the robustness of the proposed approach against imperfect CSI at the SBS, we then derive robust precoding filters under imperfect CSI for the latter case. Simulation results show that the proposed optimum precoders achieve good bit error performance at the secondary users while meeting the interference constraints at the PUs.
Resumo:
This paper considers cooperative spectrum sensing in Cognitive Radios. In our previous work we have developed DualSPRT, a distributed algorithm for cooperative spectrum sensing using Sequential Probability Ratio Test (SPRT) at the Cognitive Radios as well as at the fusion center. This algorithm works well, but is not optimal. In this paper we propose an improved algorithm- SPRT-CSPRT, which is motivated from Cumulative Sum Procedures (CUSUM). We analyse it theoretically. We also modify this algorithm to handle uncertainties in SNR's and fading.
Resumo:
We study the performance of cognitive (secondary) users in a cognitive radio network which uses a channel whenever the primary users are not using the channel. The usage of the channel by the primary users is modelled by an ON-OFF renewal process. The cognitive users may be transmitting data using TCP connections and voice traffic. The voice traffic is given priority over the data traffic. We theoretically compute the mean delay of TCP and voice packets and also the mean throughput of the different TCP connections. We compare the theoretical results with simulations.