85 resultados para Classical Greek society
Metal-organic framework structures - how closely are they related to classical inorganic structures?
Resumo:
Metal-organic frameworks (MOFs) have emerged as an important family of compounds for which new properties are increasingly being found. The potential for such compounds appears to be immense, especially in catalysis, sorption and separation processes. In order to appreciate the properties and to design newer frameworks it is necessary to understand the structures from a fundamental perspective. The use of node, net and vertex symbols has helped in simplifying some of the complex MOF structures. Many MOF structures are beginning to be described as derived from inorganic structures. In this tutorial review, we have provided the basics of the node, the net and the vertex symbols and have explained some of the MOF structures. In addition, we have also attempted to provide some leads towards designing newer structures/topologies.
Resumo:
Monopoles which are sources of non-Abelian magnetic flux are predicted by many models of grand unification. It has been argued elsewhere that a generic transformation of the "unbroken" symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In this paper, we show that similar topological obstructions are encountered in the mechanics of a test particle in the field of these monopoles and that the transformations of H cannot all be globally implemented as canonical transformations. For the SU(5) model, if H is SU(3)C×U(1)em, a consequence is that color multiplets are not globally defined, while if H is SU(3)C×SU(2)WS×U(1)Y, the same is the case for both color and electroweak multiplets. There are, however, several subgroups KT, KT′,… of H which can be globally implemented, with the transformation laws of the observables differing from group to group in a novel way. For H=SU(3)C×U(1)em, a choice for KT is SU(2)C×U(1)em, while for H=SU(3)C×SU(2)WS×U(1)Y, a choice is SU(2)C×U(1)×U(1)×U(1). The paper also develops the differential geometry of monopoles in a form convenient for computations.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
An exact classical theory of the motion of a point dipole in a meson field is given which takes into account the effects of the reaction of the emitted meson field. The meson field is characterized by a constant $\chi =\mu /\hslash $ of the dimensions of a reciprocal length, $\mu $ being the meson mass, and as $\chi \rightarrow $ 0 the theory of this paper goes over continuously into the theory of the preceding paper for the motion of a spinning particle in a Maxwell field. The mass of the particle and the spin angular momentum are arbitrary mechanical constants. The field contributes a small finite addition to the mass, and a negative moment of inertia about an axis perpendicular to the spin axis. A cross-section (formula (88 a)) is given for the scattering of transversely polarized neutral mesons by the rotation of the spin of the neutron or proton which should be valid up to energies of 10$^{9}$ eV. For low energies E it agrees completely with the old quantum cross-section, having a dependence on energy proportional to p$^{4}$/E$^{2}$ (p being the meson momentum). At higher energies it deviates completely from the quantum cross-section, which it supersedes by taking into account the effects of radiation reaction on the rotation of the spin. The cross-section is a maximum at E $\sim $ 3$\cdot $5$\mu $, its value at this point being 3 $\times $ 10$^{-26}$ cm.$^{2}$, after which it decreases rapidly, becoming proportional to E$^{-2}$ at high energies. Thus the quantum theory of the interaction of neutrons with mesons goes wrong for E $\gtrsim $ 3$\mu $. The scattering of longitudinally polarized mesons is due to the translational but not the rotational motion of the dipole and is at least twenty thousand times smaller. With the assumption previously made by the present author that the heavy partilesc may exist in states of any integral charge, and in particular that protons of charge 2e and - e may occur in nature, the above results can be applied to charged mesons. Thus transversely polarised mesons should undergo a very big scattering and consequent absorption at energies near 3$\cdot $5$\mu $. Hence the energy spectrum of transversely polarized mesons should fall off rapidly for energies below about 3$\mu $. Scattering plays a relatively unimportant part in the absorption of longitudinally polarized mesons, and they are therefore much more penetrating. The theory does not lead to Heisenberg explosions and multiple processes.
Resumo:
This paper presents an approximate three-dimensional elasticity solution for an infinitely long, cross-ply laminated circular cylindrical shell panel with simply supported boundary conditions, subjected to an arbitrary discontinuous transverse loading. The solution is based on the principal assumption that the ratio of the thickness of the lamina to its middle surface radius is negligible compared to unity. The validity of this assumption and the range of application of this approximate solution have been established through a comparison with an exact solution. Results of classical and first-order shear deformation shell theories have been compared with the results of the present solution to bring out the accuracy of these theories. It is also shown that for very shallow shell panels the definition of a thin shell should be based on the ratio of thickness to chord width rather than the ratio of thickness to mean radius.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
We propose a new scheme for the use of constraints in setting up classical, Hamiltonian, relativistic, interacting particle theories. We show that it possesses both Poincaré invariance and invariance of world lines. We discuss the transition to the physical phase space and the nonrelativistic limit.
Resumo:
We present relativistic, classical particle models that possess Poincaré invariance, invariant world lines, particle interaction, and separability.
Resumo:
The problem of separability in recent models of classical relativistic interacting particles is examined. This physical requirement is shown to be more subtle than naive separability of all the constraints defining the system: it is adequate to be able to canonically transform the time-fixing constraints from an unseparated to a separated form when clusters emerge. Viewing separability in this way, and within a specific framework, we are led to a new no-interaction theorem which states the incompatibility of nontrivial interaction with relativistic invariance, separability, and invariant world lines for more than two particles.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.
Resumo:
The classical theory of plates neglects the effects of rotatory inertia and shear deformation, and due to this assumption it is applicable only for thin plates. Mindlin presented an improved plate theory which is fairly accurate.