24 resultados para Chemicals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-dispersible, photocatalytic Fe3O4@TiO2 core shell magnetic nanoparticles have been prepared by anchoring cyclodextrin cavities to the TiO2 shell, and their ability to capture and photocatalytically destroy endocrine-disrupting chemicals, bisphenol A and dibutyl phthalate, present in water, has been demonstrated. The functionalized nanoparticles can be magnetically separated from the dispersion after photocatalysis and hence reused. Each component of the cyclodextrin-functionalized Fe3O4@TiO2 core shell nanoparticle has a crucial role in its functioning. The tethered cyclodextrins are responsible for the aqueous dispersibility of the nanoparticles and their hydrophobic cavities for the capture of the organic pollutants that may be present in water samples. The amorphous TiO2 shell is the photocatalyst for the degradation and mineralization of the organics, bisphenol A and dibutyl phthalate, under UV illumination, and the magnetism associated with the 9 nm crystalline Fe3O4 core allows for the magnetic separation from the dispersion once photocatalytic degradation is complete. An attractive feature of these ``capture and destroy'' nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seven L-phenylalanine based alkyl (monopolar) and alkanediyl (bipolar) derivatives are synthesized; while the bipolar urethane amides form gels and show strong adhesive properties, the monopolar analogues form fibrous nanoscopic cloth-like tapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fish stupefying plants and their methods of use by the Gond people of Mendha village of the Gadchiroli district in Maharashtra state have been documented. For the purpose of validation, literature survey revels that many fish stupefying plants being used since long time by local people are recently well tested by many workers and are found to have many important medicinal properties. It was also observed that herbal fish stupefying agents are excellent means of fishing, which do not kill whole fish stock like chemicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type and amount of clay mineral plays an important role in the behaviour of fine-grained soils. Clay minerals are the primary source and moisture is often the external agent of swelling in soils. Also soils may exhibit increased/reduced swelling due to interaction with chemicals. Alkalis used in industrial operations are one such example. Concentrations of alkali and mineral type are the key factors in such interactions. The present paper reports the changes in the properties of an expansive Black Cotton soil containing a mixed layer mineral, rectorite upon interaction with high concentration caustic solutions. X-ray diffraction studies have shown that the rectorite present in the soil undergoes changes with increase in the concentration of alkali. Saponite gets transformed to nantronite. Small amount of kaolinitic mineral present in the soil also reacts with alkali producing some changes in its mineralogy. Many hydroxides are produced. Differential thermal analysis studies have been supportive of these changes. Consequent of these changes, the soil-specific surface increases, changes its Atterberg limits and free swell volume increases. The results have been supported by the characteristics and behaviour of samples contaminated in the field with alkali from an alumina extraction plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanotechnology is a new technology which is generating a lot of interest among academicians, practitioners and scientists. Critical research is being carried out in this area all over the world.Governments are creating policy initiatives to promote developments it the nanoscale science and technology developments. Private investment is also seeing a rising trend. Large number of academic institutions and national laboratories has set up research centers that are workingon the multiple applications of nanotechnology. Wide ranges of applications are claimed for nanotechnology. This consists of materials, chemicals, textiles, semiconductors, to wonder drug delivery systems and diagnostics. Nanotechnology is considered to be a next big wave of technology after information technology and biotechnology. In fact, nanotechnology holds the promise of advances that exceed those achieved in recent decades in computers and biotechnology. Much interest in nanotechnology also could be because of the fact that enormous monetary benefits are expected from nanotechnology based products. According to NSF, revenues from nanotechnology could touch $ 1 trillion by 2015. However much of the benefits are projected ones. Realizing claimed benefits require successful development of nanoscience andv nanotechnology research efforts. That is the journey of invention to innovation has to be completed. For this to happen the technology has to flow from laboratory to market. Nanoscience and nanotechnology research efforts have to come out in the form of new products, new processes, and new platforms.India has also started its Nanoscience and Nanotechnology development program in under its 10(th) Five Year Plan and funds worth Rs. One billion have been allocated for Nanoscience and Nanotechnology Research and Development. The aim of the paper is to assess Nanoscience and Nanotechnology initiatives in India. We propose a conceptual model derived from theresource based view of the innovation. We have developed a structured questionnaire to measure the constructs in the conceptual model. Responses have been collected from 115 scientists and engineers working in the field of Nanoscience and Nanotechnology. The responses have been analyzed further by using Principal Component Analysis, Cluster Analysis and Regression Analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

People in many countries are affected by fluorosis owing to the high levels of fluoride in drinking water. An inexpensive method for estimating the concentration of the fluoride ion in drinking water would be helpful in identifying safe sources of water and also in monitoring the performance of defluoridation techniques. For this purpose, a simple, inexpensive, and portable colorimeter has been developed in the present work. It is used in conjunction with the SPADNS method, which shows a color change in the visible region on addition of water containing fluoride to a reagent solution. Groundwater samples were collected from different parts of the state of Karnataka, India and analysed for fluoride. The results obtained using the colorimeter and the double beam spectrophotometer agreed fairly well. The costs of the colorimeter and of the chemicals required per test were about Rs. 250 (US$ 5) and Rs. 2.5 (US$ 0.05), respectively. In addition, the cost of the chemicals required for constructing the calibration curve was about Rs. 15 (US$ 0.3). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal endophytes of tropical trees are expected to be exceptionally species rich as a consequence of high tree diversity in the tropics and the purported host restriction among the endophytes. Based on this premise, endophytes have been regarded as a focal group for estimating fungal numbers because their possible hyperdiverse nature would reflect significantly global fungal diversity. We present our consolidated ten-year work on 75 dicotyledonous tree hosts belonging to 33 families and growing in three different types of tropical forests of the NBR in the Western Ghats, southern India. We conclude that endophyte diversity in these forests is limited due to loose host affiliations among endophytes. Some endophytes have a wide host range and colonize taxonomically disparate hosts suggesting adaptations in them to counter a variety of defense chemicals in their hosts. Furthermore, such polyphagous endophytes dominate the endophyte assemblages of different tree hosts. Individual leaves may be densely colonized but only by a few endophyte species. It appears that the environment (the type of forest in this case) has a larger role in determining the endophyte assemblage of a plant host than the taxonomy of the host plant. Thus, different tropical plant communities have to be studied for their endophyte diversity to test the generalization that endophytes are hyperdiverse in the tropics, estimate their true species richness, and use them as a predictor group for more accurate assessment of global fungal diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport processes of the dissolved chemicals in stratified or layered soils have been studied for several decades. In case of the solute transport through stratified layers, interface condition plays an important role in determining appropriate transport parameters. First‐ type and third‐ type interface conditions are generally used in the literature. A first‐type interface condition will result in a continuous concentration profile across the interface at the expense of solute mass balance. On the other hand, a discontinuity in concentration develops when a third‐ type interface condition is used. To overcome this problem, a combined first‐ and third‐ type condition at the interface has been widely employed which yields second‐ type condition. This results in a similar break‐through curve irrespective of the layering order, which is non‐physical. In this work, an interface condition is proposed which satisfies the mass balance implicitly and brings the distinction between the breakthrough curves for different layering sequence corroborating with the experimental observations. This is in disagreement with the earlier work by H. M. Selim and co‐workers but, well agreement with the hypothetical result by Bosma and van der Zee; and Van der Zee.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel PCR based assay was devised to specifically detect contamination of any Salmonella serovar in milk, fruit juice and ice-cream without pre-enrichment. This method utilizes primers against hilA gene which is conserved in all Salmonella serovars and absent from the close relatives of Salmonella. An optimized protocol, in terms time and money, is provided for the reduction of PCR contaminants from milk, ice-cream and juice through the use of routine laboratory chemicals. The simplicity, efficiency (time taken 3-4 h) and sensitivity (to about 5-10 CFU/ml) of this technique confers a unique advantage over other previously used time consuming detection techniques. This technique does not involve pre-enrichment of the samples or extensive sample processing, which was a pre-requisite in most of the other reported studies. Hence, this assay can be ideal for adoption, after further fine tuning, by food quality control for timely detection of Salmonella contamination as well as other food-borne pathogens (with species specific primers) in food especially milk, ice-cream and fruit juice. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photocatalysis refers to the oxidation and reduction reactions on semiconductor surfaces, mediated by the valence band holes and conduction band electrons, which are generated by the absorption of ultraviolet or visible light radiation. Photocatalysis is widely being practiced for the degradation and mineralization of hazardous organic compounds to CO2 and H2O, reduction of toxic metal ions to their non-toxic states, deactivation and destruction of water borne microorganisms, decomposition of air pollutants like volatile organic compounds, NOx, CO and NH3, degradation of waste plastics and green synthesis of industrially important chemicals. This review attempts to showcase the well established mechanism of photocatalysis, the use of photocatalysts for water and air pollution control,visible light responsive modified-TiO2 and non-TiO2 based materials for environmental and energy applications, and the importance of developing reaction kinetics for a comprehensive understanding and design of the processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The air we breathe is being polluted by activities such as vehicles; burning coal, oil, and other fossil fuels; and manufacturing chemicals. Air pollution can even come from smaller, everyday activities such as cooking, space heating, and degreasing and painting operations. These activities add gases and particles to the air we breathe. When these gases and particles accumulate in the air in high enough concentrations, they can harm us and our environment. The module on Air Pollution deals with the various sources of air pollution and the associated environmental and health impacts. It also discusses the appropriate measures to control/prevent the same.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Selectivity of the particular solvent to separate a mixture is essential for the optimal design of a separation process. Supercritical carbon dioxide (SCCO2) is widely used as a solvent in the extraction, purification and separation of specialty chemicals. The effect of the temperature and pressure on selectivity is complicated and varies from system to system. The effect of temperature and pressure on selectivity of SCCO2 for different solid mixtures available in literature was analyzed. In this work, we have developed two model equations to correlate the selectivity in terms of temperature and pressure. The model equations have correlated the selectivity of SCCO2 satisfactorily for 18 solid mixtures with an average absolute relative deviation (AARD) of around 5%. (C) 2012 Elsevier B.V. All rights reserved.