230 resultados para Cerium oxide nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solution precursor plasma spray (SPPS) technique has been used for direct deposition of cerium oxide nanoparticles (CNPs) from various cerium salt solutions as precursors. Solution precursors were injected into the hot zone of a plasma plume to deposit CNP coatings. A numerical study of the droplet injection model has been employed for microstructure development during SPPS. The decomposition of each precursor to cerium oxide was analyzed by thermogravimetric-differential thermal analysis and validated by thermodynamic calculations. The presence of the cerium oxide phase in the coatings was confirmed by X-ray diffraction studies. Transmission electron microscopy studies confirmed nanocrystalline (grain size <14 nm) characteristic of the coatings. X-ray photoelectron spectroscopy studies indicated the presence of a high concentration of Ce3+ (up to 0.32) in the coating prepared by SPPS. The processing and microstructure evolution of cerium oxide coatings with high nonstoichiometry are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-aminobenzoate- intercalated copper hydroxysalt was prepared by coprecipitation at high pH (similar to 12). As the pH was reduced to similar to 7 on washing with water, the development of partial positive charge on the amine end of the intercalated anion caused repulsion between the layers leading to delamination and colloidal dispersion of monolayers of copper hydroxysalt in water. The dispersed copper hydroxysalt monolayers were used as precursors for the synthesis of copper(I)/(II) oxide nanoparticles at room temperature. While the hydroxysalt layers yielded spindle-shaped CuO particles when left to stand, they formed hollow spherical nanoparticles of Cu(2)O when treated with an alkaline solution of ascorbic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing commercial applications had brought aluminium oxide nanoparticles under,toxicologists' purview. In the present study, the cytotoxicity of two different sized aluminium oxide nanoparticles (ANP(1), mean hydrodynamic diameter 82.6 +/- 22 nm and ANP(2), mean hydrodynamic diameter 246.9 +/- 39 nm) towards freshwater algal isolate Chlorella ellipsoids at low exposure levels (<= 1 mu g/mL) using sterile lake water as the test medium was assessed. The dissolution of alumina nanoparticles and consequent contribution towards toxicity remained largely unexplored owing to its presumed insoluble nature. Herein, the leached Al3+ ion mediated toxicity has been studied along with direct particulate toxicity to bring out the dynamics of toxicity through colloidal stability, biochemical, spectroscopic and microscopic analyses. The mean hydrodynamic diameter increased with time both for ANP(1) 82.6 +/- 22 nm (0 h) to 246.3 +/- 59 nm (24h), to 1204 +/- 140 nm (72 h)] and ANP(2) 246.9 +/- 39 nm (Oh) to 368.28 +/- 48 nm (24 h), to 1225.96 +/- 186 nm (72 h)] signifying decreased relative abundance of submicron sized particles (<1000 nm). The detailed cytotoxicity assays showed a significant reduction in the viability dependent on dose and exposure. A significant increase in ROS and LDH levels were noted for both ANPs at 1 mu g/mL concentration. The zeta potential and FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (SEM, TEM, and CLSM). At 72 h, significant Al3+ ion release in the test medium 0.092 mu g/mL for ANP(1), and 0.19 mu g/mL for ANP(2)] was noted, and the resulting suspension containing leached ions caused significant cytotoxicity, revealing a substantial ionic contribution. This study indicates that both the nano-size and ionic dissolution play a significant role in the cytotoxicity of ANPs towards freshwater algae, and the exposure period largely determines the prevalent mode of nano-toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) and silver doped zinc oxide (ZnO:Ag) nanoparticles were prepared using nitrates of zinc and silver as oxidizers and ethylene diaminetetraacetic acid (EDTA) as a fuel via low-temperature combustion synthesis (LCS) at 500 degrees C. X-ray diffraction (XRD) pattern indicates the presence of silver in the hexagonal wurtzite structure of ZnO. Fourier transform infrared (FTIR) spectrum indicates the presence of Ag-Zn-O stretching vibration at 510 cm(-1). Transmission electron microscopy (TEM) images shows that the average particle size of ZnO and ZnO:Ag nanoparticles were found to be 58 nm and 52 nm, respectively. X-ray photoelectron spectroscopy (XPS) data clearly indicates the presence of Ag in ZnO crystal lattice. The above characterization techniques indicate that the incorporation of silver affects the structural and optical properties of ZnO nanoparticles. ZnO:Ag nanoparticles exhibited 3% higher photocatalytic efficiency than pure ZnO nanoparticles. ZnO:Ag nanoparticles show better photocatalytic activity for the degradation of trypan blue (TrB) compared to undoped ZnO nanoparticles. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe(3)O(4)NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe(3)O(4)NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1-60 and 1.5-70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25 degrees C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%-100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 degrees C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWCNTs) were decorated with crystalline zinc oxide nanoparticles (ZnO NPs) by wet chemical route to form MWCNT/ZnO NPs hybrid. The hybrid sample was characterized by scanning and transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Electrical conductivity of the hybrid can be tuned by varying the ZnO NPs content in the hybrid. In order to investigate the effect of nanoparticles loading on the conduction of MWCNTs network, electrical conductivity studies have been carried out in the wide temperature range 1.5-300K. The electrical conductivity of the hybrid below 100K is explained with the combination of variable range hopping conduction and thermal fluctuation induced tunnelling model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One-pot synthesis of amorphous iron oxide nanoparticles with two different dimensions (<5 nm and 60 nm) has been achieved using the reverse micelle method, with <5 nm nanoparticles separated from the stable colloid by exploiting their magnetic behaviour. The transformation of the as-prepared amorphous powders into Fe3O4 and Fe2O3 phases (gamma and alpha) is achieved by carrying out controlled annealing at elevated temperatures under different optimized conditions. The as-prepared samples resulting from micellar synthesis and the corresponding annealed ones are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM), and by Raman and X-ray photoelectron spectroscopies. Expectedly, the magnetic characteristics of Fe3O4 and Fe2O3 phase (gamma and alpha) nanoparticles are found to have strong dependence on their phase, dimension, and morphology. The coercivity of Fe3O4 and Fe2O3 (gamma and alpha) nanoparticles is reasonably high, even though high resolution TEM studies bring out that these nanoparticles are single crystalline. This is in contrast with previous reports wherein poly-crystallinity of iron oxides nanoparticles has been regarded as a prerequisite for high coercivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tin oxide nanoparticles are synthesized using solution combustion technique and tin oxide - carbon composite thick films are fabricated with amorphous carbon as well as carbon nanotubes (CNTs). The x-ray diffraction, Raman spectroscopy and porosity measurements show that the as-synthesized nanoparticles are having rutile phase with average crystallite size similar to 7 nm and similar to 95 m(2)/g surface area. The difference between morphologies of the carbon doped and CNT doped SnO2 thick films, are characterized using scanning electron microscopy and transmission electron microscopy. The adsorption-desorption kinetics and transient response curves are analyzed using Langmuir isotherm curve fittings and modeled using power law of semiconductor gas sensors. (C) 2015 Author(s).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Xanthine oxidase (XOD) extracted from bovine milk was immobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited on the surface of an Au electrode. The nanocomposite modified Au electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. Under optimal operation conditions (25 degrees C, + 0.2 V vs. Ag/AgCl, sodium phosphate buffer, pH 7.5), the following characteristics are attributed to the biosensor: linearity of response up to xanthine concentrations of 120 mu M, detection limit of 0.05 mu M (S/N = 3) and a response time of at most 4 s. After being used 100 times over a period of 120 days, only 50% loss of the initial activity of the biosensor was evaluated when stored at 4 degrees C. The fabricated biosensor was successfully employed for the determination of xanthine in fish meat.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gadolinium oxide, cerium oxide, and 10 mol% gadolinia doped ceria ceramic powders have been synthesized using combustion technique. Though the cubic gadolinia phase is stable at room temperature, single phase monoclinic gadolinia was obtained as a result of combustion synthesis using fuel lean and stoichiometric precursor compositions. This powder was subjected to calcination treatment and ceria doping to study the stability of phases and the rate of phase transformation from monoclinic to cubic gadolinia. It was found that monoclinic gadolinia transforms to cubic gadolinia upon calcination at temperatures less than 1200 degrees C. It was also found that rate of phase transformation is more for powder produced using fuel lean compositions; and the rate is enhanced upon ceria doping. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cobalt doped zinc oxide nanoparticles were prepared through simple wet chemical method. X-ray diffraction studies confirm the prepared particles are in wurtzite structure. Scanning Electron Microscopy studies show the shape and morphology of the particles. To identify the presence of cobalt in ZnO, Energy Dispersive X-ray analysis was done. Optical absorption measurements show the presence of exciton peak at 375 nm. Photoluminescence studies were done with the excitation wavelength of 330 nm, which shows the emission because of exciton recombination and oxygen vacancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we have reported the controlled synthesis of uniformly grown zinc oxide nanoparticles (ZnO NPs) films by a simple, low-cost, and scalable pulsed spray pyrolysis technique. From the surface analysis it is noticed that the as-deposited films have uniformly dispersed NPs-like morphology. The structural studies reveal that these NPs films have highly crystalline hexagonal crystal structure, which are preferentially orientated along the (001) planes. The size of the NPs varied between 5 and 100 nm, and exhibited good stoichiometric chemical composition. Raman spectroscopic analysis reveals that these ZnO NPs films have pure single phase and hexagonal crystal structure. These unique nanostructured films exhibited a low electrical resistivity (5 Omega cm) and high light transmittance (90 %) in visible region.