131 resultados para Cat. Mironiano
Resumo:
This study updates the status and conservation of the Endangered Asian elephant Elephas maximus in Cat Tien National Park, Vietnam. Line transect indirect surveys, block surveys for elephant signs, village surveys of elephant-human conflict incidents, guard-post surveys for records of sightings, and surveys of elephant food plants were undertaken during the dry and wet seasons of 2001. A minimum of 11 elephants and a maximum of 15-17 elephants was estimated for c. 500 km2 of the Park and its vicinity. The elephants are largely confined to the southern boundary of the Park and make extensive use of the adjoining La Nga State Forest Enterprises. During the dry season the elephants depend on at least 26 species of wild and cultivated plants, chiefly the fruits of cashew. Most of the villages surveyed reported some elephant-human conflict. Two adult male elephants seem to cover a large area to raid crops, whereas the family groups restrict themselves to a few villages; overall, the conflict is not serious. Since 2001 there have been no reports of any deaths or births of elephants in the Park. We make recommendations for habitat protection and management, increasing the viability of the small population, reducing elephant-human conflicts, and improving the chances of survival of the declining elephants of this Park. The Government has now approved an Action Plan for Urgent Conservation Areas in Vietnam that calls for the establishment of three elephant conservation areas in the country, including Cat Tien National Park.
Resumo:
An analytical and experimental study of the hydraulic jump in stilling basins with abrupt drop and sudden enlargement, called the spatial B-jump here, is carried out for finding the sequent depth ratio and resulting energy dissipation. The spatial B-jump studied has its toe downstream of the expansion section, and the stream lines at the toe are characterized by downward curvature. An expression is obtained for the sequent depth ratio based on the momentum equation with suitable assumptions for the extra pressure force term because of the abrupt drop in the bed and sudden enlargement in the basin width. Predictions compare favorably with experiments. It is shown that the spatial B-jump needs less tailwater depth, thereby enhancing the stability of the jump when compared either with spatial jump, which forms in sudden expanding channels, or with B-jump, which forms in a channel with an abrupt drop in bed. It is also shown that there is a significant increase in relative energy loss for the spatial B-jump compared to either the spatial jump or B-jump alone.
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
One of the major problems faced by coal based thermal power stations is handling and disposal of ash. Among the various uses of fly ash, the major quantity of ash produced is used in geotechnical engineering applications such as construction of embankments, as a backfill material, etc. The generally low specific gravity of fly ash resulting in low unit weight as compared to soils is an attractive property for its use in geotechnical applications. In general, specific gravity of coal ash lies around 2.0 but can vary to a large extent (1.6 to 3.1). The variation of specific gravity of coal ash is due to the combination of various factors like gradation, particle shape, and chemical composition. Since specific gravity is an important physical property, it has been studied in depth for three Indian coal ashes and reported in this paper.
Resumo:
The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.
Resumo:
The interactions of dextrin with biotite mica and galena have been investigated through adsorption, flotation, and electrokinetic measurements. The adsorption densities of dextrin onto mica continuously increase with increase of pH, while those onto galena show a maximum at pH 11.5. It is observed that the adsorption density of dextrin onto galena is quite high compared to that on mica. Both the adsorption isotherms exhibit Langmuirian behavior. Electrokinetic measurements portray conformational rearrangements of macromolecules with the loading, resulting in a shift of the shear plane, further away from the interface. Dissolution experiments indicate release of the lattice metal ions from mica and galena. Coprecipitation tests confirm polymer-metal ion interaction in the bulk solution. Dextrin does not exhibit any depressant action toward mica, whereas, with galena, the flotation recovery is decreased with an increase in pH beyond 9, in the presence of dextrin, complementing the adsorption results. Differential flotation results on a synthetic mixture of mica and galena show that mica can be selectively separated from galena using dextrin as a depressant for galena above pH 10. Possible mechanisms of interaction between dextrin and mica/galena are discussed.
Resumo:
The first stereoselective total synthesis of (+/-)-allo-cedrol 20, an enantiomer of khusiol and a complex sesquiterpene having a novel tricyclo[5.2.2.0(1,5)]undecane framework, is reported from 8-methoxytricyclo[6.2.2.0(1,6)]dodec-6-en-9-one 6c. The methodology involves preparation of 9-methoxytricyclo[7.2.1.0(1,6)]dodec-6-en-8-one 12 from 6c and its conversion through the compounds 8-benzyloxy-7,7-dimethyl-9-methoxytricyclo[7.2.1.0(1,6)]dodec-5-ene 38, 7-benzyloxy-8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecane 48 into 8-methoxy-2,6,6-trimethyltricyclo[6.2.1.0(1,5)]undecan-7-one 49. Wittig reaction of 49 affords the olefin 50 which has been smoothly rearranged into khusione 51. Metal-ammonia reduction of khusione under specific conditions affords (+/-)-allo-cedrol. Thus, bridgehead substitution of a methoxy group by a methyl group is the key reaction in this synthesis. In an alternative strategy, attempted conversion of 8-methoxy-2-methyltricyclo[6.2.1.0(1,5)]undec-5-en-7-one 16 into khusione 37 results in an inseparable mixture of the isomers. A notable observation in this synthesis is the unusual formation of a gamma-alkylated product 27 during Woodward methylation of 16.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
The diphenoxy bicyclic tetraphosphapentazane derivatives (EtN)(5)P-4(OPh)(2) 2 and its monoxide (EtN)(5)P-4(O)(OPh)(2) 3 have been prepared. Both 2 and 3 exist as a mixture of two isomers. One isomer of (EtN)(5)P-4(O)(OPh)(2) 3a has been isolated and its reaction with tetrachloro-1,2-benzoquinone yielded (EtN)(5)P-4(O)(OPh)(2)(O2C6Cl4) 5 in which the junction phosphorus atom becomes five-co-ordinated. Treatment of 2 or 3a with [Mo(CO)(4)(nbd)] (nbd = norbornadiene, bicyclo[2.2.1]hepta-2,5-diene), on the other hand, yielded the chelate complex [Mo(CO)(4){(EtN)(5)P-4(O)(n)(OPh)(2)}] (n = 0 or 1; 6 or 7) in which the peripheral phosphorus atoms are bonded to the metal. The structures of 3a and 5-7 have been confirmed by single-crystal X-ray diffraction studies. The two P3N3 rings in 3a and 5 adopt twist/twist and irregular/twist conformations respectively; the phenoxy substituents occupy the 'pseudo axial' positions. However, an ideal chair conformation is observed for the P3N3 rings in 6 and 7 with the phenoxy substituents taking up the 'pseudo equatorial' positions. The NMR spectroscopic data for the compounds are discussed.
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
The DL- and L-arginine complexes of oxalic acid are made up of zwitterionic positively charged amino acid molecules and semi-oxalate ions. The dissimilar molecules aggregate into separate alternating layers in the former. The basic unit in the arginine layer is a centrosymmetric dimer, while the semi-oxalate ions form hydrogen-bonded strings in their layer. In the L-arginine complex each semi-oxalate ion is surrounded by arginine molecules and the complex can be described as an inclusion compound. The oxalic acid complexes of basic amino acids exhibit a variety of ionization states and stoichiometry. They illustrate the effect of aggregation and chirality on ionization state and stoichiometry, and that of molecular properties on aggregation. The semi-oxalate/oxalate ions tend to be planar, but large departures from planarity are possible. The amino acid aggregation in the different oxalic acid complexes do not resemble one another significantly, but the aggregation of a particular amino acid in its oxalic acid complex tends to have similarities with its aggregation in other structures. Also, semi-oxalate ions aggregate into similar strings in four of the six oxalic acid complexes. Thus, the intrinsic aggregation propensities of individual molecules tend to be retained in the complexes.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
The role of interaction between Asn259 (catalytic domain) with Gln821 (C-terminal domain) in PeptidaseN was investigated. The k(cat) of PeptidaseN containing Asn259Asp or Gln821Glu is enhanced whereas it is suppressed in Asn259AspGln821Glu. Structural analysis shows this interaction to change the relative disposition of active site residues, which modulates catalytic activity.
Resumo:
Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K-m values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant;(1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.