31 resultados para Carl Pfaffenberg
Resumo:
Raman spectrum of a single crystal of ammonium sulphamate has been recorded for the two different orientations using λ 2537 resonance radiation of the mercury as the exciter. Thirty-four Raman lines have been observed of which eight belong to the lattice oscillations. Weak hydrogen bonding of NH2 group in the crystal was predicted. The infra-red absorption spectrum of the substance was taken in the powder form in potassium bromide disc, using Carl Zeiss UR10 IR spectrometer. Thirty-five absorption maxima could be identified.
Resumo:
Raman spectrum of a single crystal of potassium sulphamate has been recorded for the first time using λ 2536 radiation of mercury as the exciter. Thirty-three Raman lines have been observed of which nine belong to the lattice oscillations. The infra-red absorption spectrum of the substance was taken in the powder form in potassium bromide disc using Carl Zeiss UR 10 IR spectrometer. Thirty-six absorption maxima could be identified of which twenty-five have been recorded for the first time. The analysis clearly shows that the N-H bond in the crystalline potassium sulphamate is not hydrogen-bonded to any appreciable extent.
Resumo:
Hydrogen plasma can be used for deoxidation of functional materials containing reactive metals in both bulk and thin film forms. Since the different species in the plasma are not in thermodynamic equilibrium, application of classical thermodynamics to the analysis of such a system is associated with some difficulties. While global equilibrium approaches have been tried, with and without additional approximations or constraints, there is some ambiguity in the results obtained. Presented in this article is the application of a local equilibrium concept to assess the thermodynamic limit of the reaction of each species present in the gas with oxides or oxygen dissolved in metals. Each reaction results in a different pal tial pressure of H2O. Because of the higher reactivity of the dissociated and ionized species and the larger thermodynamic driving force for reactions involving these species, they act as powerful reducing agents. It is necessary to remove the products of reaction from the plasma to prevent back reaction and gradual approach to global equilibrium. A quantitative description using the framework of the Ellingham-Richardson-Jeffes diagrams is presented.
Resumo:
The metallic glass Vitrovac 4040 with the composition Fe39Ni39Mo4Si6B12 crystallizes in the order alpha-Fe, hexagonal Ni5Si2 and gamma-(Fe,Ni,Mo) by primary, secondary and polymorphic modes, respectively. The activation energies determined from the non-isothermal kinetics using Kissinger method turn out to be 490, 550 and 449 kJ.mol-1 for the above crystallization reactions. It has been observed that alpha transforms to gamma during annealing. Further, the bct (Fe1-xNix)3B phase has been identified when the glass is annealed above 1023 K.
Resumo:
The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.
Resumo:
The development of crystallographic texture and the change in the grain size during warm rolling (300 deg K) and their effect on the tensile yield strength at 77 and 300 deg K are studied in 99.9% pure Cd. Both longitudinal and transverse specimens are tested. The yield strength obeys the Hall--Petch relation. The Hall--Petch slope, k, is lower and the intercept sigma o is higher in the warm worked material in comparison with the corresponding values for annealed Cd. The differences are attributed to the change in 1013 < and 0001 textures that are developed during warm rolling.26 refs.--AA
Resumo:
The constitutive flow behaviour of OFHC copper under working conditions is studied using hot compression in the temperature range 650 to 900-degrees-C and strain rate range 0.001 to 100 s-1. The variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain rate sensitivity) with temperature and strain rate is represented in the form of a power dissipation map and interpreted on the basis of the Dynamic Materials Model. The map prominently exhibited a domain centered at 850-degrees-C and 100 s-1 with a peak efficiency of 35 %. On the basis of the correlation of variations of grain size, efficiency of power dissipation and hot workability with temperature, the domain is identified to represent dynamic recrystallization (DRX).
Resumo:
The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase
Resumo:
Indigenous peoples with a historical continuity of resource-use practices often possess a broad knowledge base of the behavior of complex ecological systems in their own localities. This knowledge has accumulated through a long series of observations transmitted from generation to generation. Such ''diachronic'' observations can be of great value and complement the ''synchronic''observations on which western science is based. Where indigenous peoples have depended, for long periods of time, on local environments for the provision of a variety of resources, they have developed a stake in conserving, and in some cases, enhancing, biodiversity. They are aware that biological diversity is a crucial factor in generating the ecological services and natural resources on which they depend. Some indigenous groups manipulate the local landscape to augment its heterogeneity, and some have been found to be motivated to restore biodiversity in degraded landscapes. Their practices for the conservation of biodiversity were grounded in a series of rules of thumb which are apparently arrived at through a trial and error process over a long historical time period. This implies that their knowledge base is indefinite and their implementation involves an intimate relationship with the belief system. Such knowledge is difficult for western science to understand. It is vital, however, that the value of the knowledge-practice-belief complex of indigenous peoples relating to conservation of biodiversity is fully recognized if ecosystems and biodiversity are to be managed sustainably. Conserving this knowledge would be most appropriately accomplished through promoting the community-based resource-management systems of indigenous peoples.
Hot deformation and microstructural evolution in an alpha(2)/O titanium aluminide alloy Ti-25Al-15Nb
Resumo:
Deformation processing and microstructural development of an alpha(2)/O aluminide alloy Ti-25Al-15Nb (at.%) was studied in the temperature range of 950 to 1200 degrees C and strain rate range of 10(-3) to 100 s(-1). Regions of processing and instability were identified using dynamic materials model. Dynamic recrystallization (DRX) of alpha(2)/O phase and p phase were seen to occur in the region of 950 to 1050 degrees C/0.001 to 0.05 s(-1) and 1125 to 1175 degrees C/0.001 to 0.1 s(-1), respectively. Unstable flow was seen to occur in the region of 1050 to 1190 degrees C/10 to 100 s(-1). Thermal activation analysis showed that DRX of alpha(2)/O and beta was controlled by cross-slip.
Resumo:
Laminated composite structures are susceptible to damage under impacts with attendant properly degradation. While studies on damage tolerance behaviour are emphasised and the findings reported, the citations correlating impacts with the fracture features are limited. In the present study, therefore, attempts have been made to depict how the transition of the fracture features take place depending on the type and extent of defect introduced onto the carbon-epoxy system. The test specimens were subjected to differing levels of low energy pendulum impacts with a view to have specimens with varying levels of intial impacts history. Into such specimens, additional defect in the form of slits of varying depths were introduced by a mechanical process. The test coupons were then allowed to fail by impact. The fracture surface was studied under scanning electron microscope. The fractographic features that appear, based on the induced/inserted defects, are presented in this paper. It was noticed that the energy absorbed for final fracture could be associated with the defect introduced into the system. It was also observed that the size of the mechanically inserted defect had a significant influence on the features of the fracture surface.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.
Resumo:
Nickel orthosilicate (Ni2SiO4) has been found to decompose into its component binary oxides in oxygen potential gradients at 1373 K. Nickel oxide was formed at the high oxygen potential boundary, while silica was detected at the low oxygen potential side. Significant porosity and fissures were observed near the Ni2SiO4/SiO2 interface and the SiO2 layer. The critical oxygen partial pressure ratio required for decomposition varied from 1.63 to 2.15 as the oxygen pressures were altered from 1.01 ⊠ 105 to 2.7X 10−4 Pa, well above the dissociation pressure of Ni2SiO4. Platinum markers placed at the boundaries of the Ni2SiO4 sample indicated growth of NiO at the higher oxygen potential boundary, without any apparent transport of material to the low oxygen potential side. However, significant movement of the bulk Ni2SiO4 crystal with respect to the marker was not observed. The decomposition of the silicate occurs due to the unequal rates of transport of Ni and Si. The critical oxygen partial pressure ratio required for decomposition is related both to the thermodynamic stability of Ni2SiO4 with respect to component oxides and the ratio of diffusivities of nickel and silicon. Kinetic decomposition of multicomponent oxides, first discovered by Schmalzried, Laqua, and co-workers [H. Schmalzried, W. Laqua, and P. L. Lin, Z. Natur Forsch. Teil A 34, 192 (1979); H. Schmalzried and W. Laqua, Oxid. Met. 15, 339 (1981); W. Laqua and H. Schmalzried, Chemical Metallurgy—A Tribute to Carl Wagner (Metallurgical Society of the AIME, New York, 1981), p. 29] has important consequences for their use at high temperatures and in geochemistry.