31 resultados para Carbonell, Pere Miquel, 1434-1517
Resumo:
The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
Resumo:
The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
The search engine log files have been used to gather direct user feedback on the relevancy of the documents presented in the results page. Typically the relative position of the clicks gathered from the log files is used a proxy for the direct user feedback. In this paper we identify reasons for the incompleteness of the relative position of clicks for deciphering the user preferences. Hence, we propose the use of time spent by the user in reading through the document as indicative of user preference for a document with respect to a query. Also, we identify the issues involved in using the time measure and propose means to address them.
Resumo:
The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.
Resumo:
The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60-degrees-C is studied. Platinized-carbon electrodes with sm amounts of functional groups exhibit higher catalytic activity compared to those with large concentrations of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An x-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface functional-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.
Resumo:
Cylindrical specimens of textured commercial pure alpha-titanium plate, cut with the cylinder axis along the rolling direction for one set of experiments and in the long transverse direction for the other set, were compressed at strain rates in the range of 0.001 to 100 s-1 and temperatures in the range of 25-degrees-C to 400-degrees-C. At strain rates greater-than-or-equal-to 1 s-1, both sets of specimens exhibited adiabatic shear bands, but the intensity of shear bands was found to be higher in the rolling direction specimens than in the long transverse direction specimens. At strain rates -0.1 s-1, the material deformed in a microstructurally inhomogeneous fashion. For the rolling direction specimens, cracking was observed at 100-degrees-C and at strain rates -0.1 s-1. This is attributed to dynamic strain aging. Such cracking was not observed in the long transverse specimens. The differences in the intensity of adiabatic shear bands and that of dynamic strain aging between the two sets of test specimens are attributed to the strong crystallographic texture present in these plates.
Resumo:
The anomalous X-ray scattering (AXS) method using Cu and Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (CuI)(0.3)(Cu2O)(0.35)(MoO3)(0.35). The possible atomic arrangements in near-neighbor region of this glass were estimated by coupling the results with the least-squares analysis so as to reproduce two differential intensity profiles for Cu and Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be 6.1 at the distance of 0.187 nm. This implies that the MoO6 octahedral unit is a more probable structural entity in the glass rather than MoO4 tetrahedra which has been proposed based on infrared spectroscopy. The pre-peak shoulder observed at about 10 nm(-1) may be attributed to density fluctuation originating from the MoO6 octahedral units connected with the corner sharing linkage, in which the correlation length is about 0.8 nm. The value of the coordination number of I- around Cu+ is estimated as 4.3 at 0.261 nm, suggesting an arrangement similar to that in molten CuI.
Resumo:
The ductile-to-brittle transition temperature (DBTT) of a free-standing Pt-aluminide (PtAl) bondcoat was determined using the microtensile testing method and the effect of strain rate variation, in the range 10(-5) to 10(-1) s(-1), on the DBTT studied. The DBTT increased appreciably with the increase in strain rate. The activation energy determined for brittle-to-ductile transition, suggested that such transition is most likely associated with vacancy diffusion. Climb of aOE (c) 100 > dislocations observed in analysis of dislocation structure using a transmission electron microscope (TEM) supported the preceding mechanism.
Resumo:
In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.
Resumo:
The three dimensional structure of a protein provides major insights into its function. Protein structure comparison has implications in functional and evolutionary studies. A structural alphabet (SA) is a library of local protein structure prototypes that can abstract every part of protein main chain conformation. Protein Blocks (PBS) is a widely used SA, composed of 16 prototypes, each representing a pentapeptide backbone conformation defined in terms of dihedral angles. Through this description, the 3D structural information can be translated into a 1D sequence of PBs. In a previous study, we have used this approach to compare protein structures encoded in terms of PBs. A classical sequence alignment procedure based on dynamic programming was used, with a dedicated PB Substitution Matrix (SM). PB-based pairwise structural alignment method gave an excellent performance, when compared to other established methods for mining. In this study, we have (i) refined the SMs and (ii) improved the Protein Block Alignment methodology (named as iPBA). The SM was normalized in regards to sequence and structural similarity. Alignment of protein structures often involves similar structural regions separated by dissimilar stretches. A dynamic programming algorithm that weighs these local similar stretches has been designed. Amino acid substitutions scores were also coupled linearly with the PB substitutions. iPBA improves (i) the mining efficiency rate by 6.8% and (ii) more than 82% of the alignments have a better quality. A higher efficiency in aligning multi-domain proteins could be also demonstrated. The quality of alignment is better than DALI and MUSTANG in 81.3% of the cases. Thus our study has resulted in an impressive improvement in the quality of protein structural alignment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
In this note, a simplified procedure based on energy consideration, has been developed, for the solution of steady-state vibration of a system with combined viscous and Coulomb friction damping, subjected to frequency in dependent and frequency dependent excitation, which yields results essentially same as the exact solution. The proposed method uses results essentially same as the exact solution. The proposed method uses equivalent damping which assumes that if the damping in a system is small, the total damping effect can be represented by that of an equivalent damper.
Resumo:
Introduction: Curcumin has been a front-line topic of mainstream scientific research for a variety of diseases from cancer to Alzheimer's to infectious diseases. Curcumin suppresses the type 1 immune response, which might lead to alleviation of type 1 immune response disorders. However, the inhibition of type 1 immune response might invite infections with opportunistic pathogens. Considering its low bioavailability, several curcumin derivatives have been designed to improve its functionality. Areas covered: This is a consolidated review which aims to compare and contrast diverse aspects of curcumin in variety of diseases. The intricate underlying mechanisms and the functional determinants of curcumin are discussed. Expert opinion: Curcumin being considered as a spicy panacea, is not a remedy for all diseases. However, its ability to act differentially as an antioxidant or pro-oxidant akin to that of a double-edged sword/friend turning foe can be either beneficial or harmful for the host. It exhibits antioxidant properties at concentrations achievable in the body, making the host vulnerable to infections due to the suppression of innate immune responses. With the increase in knowledge of its functional groups, production of analogues of curcumin is underway to enhance its bioavailability and hence its therapeutic potency.
Resumo:
Introduction: Extensive studies have gone into understanding the differential role of the innate and adaptive arms of the immune system in the context of various diseases. Receptor-ligand interactions are responsible for mediating cross-talk between the innate and adaptive arms of the immune system, so as to effectively counter the pathogenic challenge. While TLRs remain the best studied innate immune receptor, many other receptor families are now coming to the fore for their role in various pathologies. Research has focused on the discovery of novel agonists and antagonists for these receptors as potential therapeutics. Areas covered: In this review, we present an overview of the recent advances in the discovery of drugs targeting important receptors such as G-protein coupled receptors, TRAIL-R, IL-1 beta receptor, PPARs, etc. All these receptors play a critical role in the modulation of the immune response. We focus on the recent paradigms applied for the generation of specific and effective therapeutics for these receptors and their status in clinical trials. Expert opinion: Non-specific activation by antagonist/agonist is a difficult problem to dodge. This demands innovation in ligand designing with the use of strategies such as allosterism and dual-specific ligands. Rigorous preclinical and clinical studies are required in transforming a compound to a therapeutic.