89 resultados para Cao, Xueqin, ca. 1717-1763.
Resumo:
With construction of a thermochemical energy conversion prototype system to store solar heat, thermal dissociation of pellets of Ca(OH)2 and hydration of CaO have been investigated in some detail for its application to the system. The inorganic substance is very attractive as a material for long term heat storage, but molar density changes associated with the reaction are fairly large. Therefore, this factor has been taken into account in the kinetic equation. The importance of additives and pellet size has been discussed considering reactivity and strength of pellets. An analysis has been attempted when chemical reaction is important. The deformation of pellets was observed during hydration.
Resumo:
Fine powders of TiO2 (rutile) with high degree of crystallinity are formed from aqueous titanium oxychloride solution under hydrothermal conditions at 160–230°C and 15–100 kg/cm2 for 1–2 hours. The anatase phase is produced from the same medium when sulfate ion impurity is present, with Image . Both these fine powders are converted to BaTiO3, SrTiO3 or CaTiO3 when suspended in Ba(OH)2 or Sr(OH)2 solution or in an aqueous slurry of carbonate-free CaO with Image , at 180–280°C and 12–65 kg/cm2 for 4–8 hours. The resulting fine powders contain monocrystallites of the perovskite phase with 0.1–1.5 μm particle size.
Resumo:
Phase relations in the system Ca-Ti-O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed. There was negligible solid solubility of Ca in the phases along the binary Ti-O, and of Ti in CaO. Four ternary oxides were identified: CaTiO3, Ca4Ti3O10 and Ca3Ti2O7 containing tetravalent titanium, and CaTi2O4 containing trivalent titanium. Tie-lines link calcium titanite (CaTi2O4) with the three calcium titanates (CaTiO3, Ca4Ti3O10 and Ca3Ti2O7), CaO, oxygen excess TiO1+delta and stoichiometric TiO. Tie-lines connect CaTiO3 with TiO2-x, Magneli phases TinO2n-1 (28 >= n >= 4), Ti3O5, Ti2O3 and TiO1+delta. CaO was found to coexist with TiO, and Ti-O solid solutions alpha and beta. The phase diagram is useful for understanding the mechanisms and kinetics of direct calciothermic reduction of TiO2 to metal and electrochemical reduction of TiO2 using graphite anode and molten CaCl2 electrolyte.
Resumo:
Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.
Resumo:
The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.”
Resumo:
The tie lines delineating equilibria between different oxides of the Ca-Al-O system and liquid Ca-Al alloy has been determined at 1373 K. Equilibration of the alloy with two adjacent oxide phases in the CaO-Al2O3 pseudo-binary system was established in a closed cell made of iron. Equilibrium oxide phases were confirmed by x-ray analysis and alloy compositions were determined by chemical analysis. The compound 12CaO.7Al2O3 Ca12Al14O33 was found to be a stable phase in equilibrium with calcium alloys. The experimental diagram is consistent with that calculated from the free energies of formation of the oxide phases and activities in liquid Ca-Al alloys at 1373 K reported in the literature.
Resumo:
Phase equilibria of the system Ca-Ta-O is established by equilibrating eleven samples at 1200 K for prolonged periods and phase identification in quenched samples by optical and scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Four ternary oxides are identified: CaTa4O11, CaTa2O6, Ca2Ta2O7 and Ca4Ta2O9. Isothermal section of the phase diagram is composed using the results. Thermodynamic properties of the ternary oxides are measured in the temperature range from 975 to 1275 K employing solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells essentially measure the chemical potentials of CaO in two-phase fields (Ta2O5 + CaTa4O11), (CaTa4O11 + CaTa2O6), (CaTa2O6 + Ca2Ta2O7), and (Ca2Ta2O7 + Ca4Ta2O9) of the pseudo-binary system CaO-Ta2O5. The standard Gibbs energies of formation of the four ternary oxides from their component binary oxides Ta2O5 and CaO are given by: Delta G(f)((ox))(o) (CaTa4O11) (+/- 482)/J mol(-1) = -58644+21.497 (T/K) Delta G(f)((ox))(o) (CaTa2O6) (+/- 618)/J mol(-1) = -55122+21.893 (T/K) Delta G(f)((ox))(o) (Ca2Ta2O7) (+/- 729)/J mol(-1) = -82562+31.843 (T/K) Delta G(f)((ox))(o) (Ca4Ta2O9) (+/- 955)/J mol(-1) = -126598+48.859 (T/K) The Gibbs energy of formation of the four ternary compounds obtained in this study differs significantly from that reported in the literature. The thermodynamic data and phase diagram are used for understanding the mechanism and kinetics of calciothermic and electrochemical reduction of Ta2O5 to metal. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.
Resumo:
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
The 1122 (n=2) member of the Tl(Ca,Ba)n+1CunO2n+3 series containing a single Tl-O layer is shown to be associated with a Tc of 90 K. This value of Tc is significantly lower than that of the 2122 phase (Tcnot, vert, similar110 K) with two Tl-O layers.
Resumo:
Neutron powder diffraction and temperature dependent dielectric studies were carried out on Ca-substituted Na0.5Bi0.5TiO3, i.e., (Na0.5Bi0.5)(1-x)CaxTiO3. Stabilization of an orthorhombic phase even at a low Ca concentration (0.05 < x < 0.10) suggests that Na0.5Bi0.5TiO3 (NBT) is susceptible to orthorhombic distortion. The orthorhombic and rhombohedral phases coexist for x=0.10, suggesting these phases to be nearly degenerate. The orthorhombic distortion favoring tendency of Ca assists in promoting the inherent instability with regard to this structure in pure NBT, which was reported recently.