95 resultados para CONDUCTING POLYANILINE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report transport and magnetic properties of a different class of highly conducting polyaniline, doped with boron trihalides BX3 (X=F, Cl, and Br). In order to understand the transport mechanism we analyze the temperature dependence of resistivity of a large number of samples, made by pelletizing doped polyaniline powder and by doping films of polyaniline. We find that the charge transport in this class of conducting polyaniline is driven by the charging-energy limited transport of charge carriers, in contrast to the quasi-one-dimensional variable range hopping conduction prevalent in conventional proton-doped polyaniline samples. Magnetic susceptibility provides further insight into the unusually high intrinsic conductivity behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyelectrolyte complexes of polyaniline with both strong and weak anionic polyelectrolytes have been prepared. It has been found that the swellability of the complexes depends on the charge content of polyaniline, i.e., on the intercrosslinking between polyaniline (which is a polyacation) and polyanions. It has also been observed that polyaniline in the polyaniline-polystresulfonic acid complex exists in the conducting state when equilibrated with basic pH in aqueous media of moderately high ionic strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New vibrational Raman features characteristic to the conductive form of polyaniline have been observed with the near-infrared excitation at 1047 nm. Based on an analogy with the resonance Raman spectrum of Michler's ketone in the lowest excited triplet (T-1) state, we consider these features as due to a dynamic structure of a diimino-1,4-phenylene unit in the polyaniline chain exchanging a positive charge very rapidly. This consideration directly leads to a conducting mechanism in which a positive charge migrates from one nitrogen to the other through the conjugated chain of polyaniline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on redox supercapacitors employing electronically conducting polymers are of great importance for hybrid power sources and pulse power applications. In the present study, polyaniline (PANI) has been potentiodynamically deposited on stainless steel substrate and characterized in a gel polymer electrolyte (GPE). Use of the GPE facilitates a voltage limit of the capacitor to 1 V, instead of 0.75 V in aqueous electrolytes. From charge-discharge studies of the solid-state PANI capacitors, a specific capacitance of 250 F g(-1) has been obtained at a specific power of 7.5 kW kg(-1) of PANI. The values of specific capacitance and specific power are considerably higher than those reported in the literature. High energy and high power characteristics of the PANI are presented. (C) 2002 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline due to its wide application in different fields. In the present work nickel ferrite nanoparticles were prepared by sol-gel citrate-nitrate method. Polyaniline/nickel ferrite nanocomposites were synthesized by a simple general and inexpensive in-situ polymerization in the presence of nickel ferrite nanoparticles. The effects of nickel ferrite nanoparticles on the DC-electrical and magnetic properties of polyaniline were investigated. The structural, morphological and thermal stability of nanocomposites were characterized by X-ray diffraction, FTIR, scanning electron micrograph and TGA. The DC conductivity of polyaniline/nickel ferrite nanocomposites have been measured as a function of temperature in the range of 80K to 300K. The magnetic properties of the nanocomposites were measured using vibrating sample magnetometer in the temperature range 300-10K up to 30 kOe magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we report an approach for the adsorption and desorption of anionic (sulfonated) dyes from aqueous solution by doped polyaniline. In this study, we have synthesized PANI with two dopants, namely, p-toluenesulfonic acid (PTSA) and camphorsulfonic acid (CSA), and used these to adsorb various dyes. It was found that the doped PANI selectively adsorbs anionic dyes and does not adsorb cationic dyes. The adsorption of anionic dyes causes the variation in electrical conductivity of PANI, indicating its potential as a conductometric sensor for these dyes at very low concentration. The adsorbed dyes were desorbed from the polymer by using a basic aqueous solution. The adsorption and desorption kinetics of the dye in the presence of doped PANI were also determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified method has been developed for the deposition of transparent semiconducting thin films of tin oxide, involving the chemical vapour phase oxidation of tin iodide. These films show sheet resistances greater than 100 Ω/□ and an average optical transmission in the visible range exceeding 80%. The method avoids uncontrolled contamination, resulting in better reproducibility of the films. The films showed direct and indirect transitions and the possibility of an indirect forbidden transition. X-ray diffraction studies reveal that the films are polycrystalline. The low mobility values of the films have been attributed to the grain boundary scattering effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have studied the propagation of pressure shocks in viscous, heat-conducting, relativistic fluids. Velocities of wave fronts and growth equations for the strength of the waves are obtained in the case of low and high temperatures with variable transport coefficients. On the basis of numerical integrations the growth equation results have been discussed. In the case of constant transport coefficients and for all admissible values of ratio of specific heats of the fluid, an analytical solution for the velocity of the wave as a function of distance along the normal trajectory to the wave front, has been obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydromagnetic spinup or spindown of an incompressible, rotating, electrically conducting fluid over an infinite insulated disk with an applied magnetic field is studied when the impulsive motion is imparted either to the fluid or to the disk. The nonlinear partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. It is found that the spinup (or spindown) time due to impulsive motion of the disk is much shorter than the spinup (or spindown) time due to the impulsive motion of the distant fluid. The spinup (or spindown) time for the hydromagnetic case is comparatively smaller than the corresponding nonmagnetic case. Spindown is not merely a mirror reflection of spinup. Physics of Fluids is copyrighted by The American Institute of Physics.