237 resultados para CC
Resumo:
X-Ray structural data, as well as semiempirical and ab initio molecular orbital calculations, reveal no systematic and substantial difference between the C–C bond lengths of cis and trans 1,2-diketones. Additional results on various conformations of 1,2-diimines and 1,2-dithiones follow the same pattern. Therefore, lone-pair repulsions cannot be implicated in the observed lengthening of C–C bonds in isatin and several related molecules. Conjugation in these systems occurs peripherally avoiding the participation of the central C–C bond. Negative hyperconjugative interaction between the oxygen lone pairs and the adjacent C–C σ* orbital is suggested to be the principal reason for the relatively long C–C bond in diketones. This effect is found in both the cis and trans conformations.
Resumo:
A variety of functionalized selenocyanates generated in situ from the corresponding alkyl halides undergo a facile reductive coupling on treatment with benzyltriethylammonium tetrathiomolybdate 1 under very mild conditions to give the corresponding diselenides in very good yields.
Resumo:
Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.
Resumo:
The chain length of the surfactant and the solvent composition are two of the factors that determine whether the lamellar or the hexagonal form of mesoporous SiO2 (or ZrO2) is formed by the neutral amine route; a lamellar-hexagonal transformation occurs on removal of the amine from the former.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
Seven L-phenylalanine based alkyl (monopolar) and alkanediyl (bipolar) derivatives are synthesized; while the bipolar urethane amides form gels and show strong adhesive properties, the monopolar analogues form fibrous nanoscopic cloth-like tapes.
Resumo:
An oxovanadium(IV) complex of dipyridophenazine, as a potent metal-based PDT agent, shows efficient DNA photocleavage activity at near-IR region and high photocytotoxicity in both UV-A and visible light in HeLa cells.
Resumo:
It is shown that prop-2-ynyl esters are useful protecting groups for carboxylic acids and that they are selectively deprotected in the presence of other esters on treatment with tetrathiomolybdate under mild conditions.
Resumo:
Concurrency control (CC) algorithms are important in distributed database systems to ensure consistency of the database. A number of such algorithms are available in the literature. The issue of performance evaluation of these algorithms has been recognized to be important. However, only a few studies have been carried out towards this. This paper deals with the performance evaluation of a CC algorithm proposed by Rosenkrantz et al. through a detailed simulation study. In doing so, the algorithm has been modified so that it can, within itself, take care of the redundancy in the database. The influences of various system parameters and the transaction profile on the response time and on the degree of conflict are considered. The entire study has been carried out using the programming language SIMULA on a DEC-1090 system.
Resumo:
Metal Auger intensity ratios of the type Z(CVV)/I(CC'V) and Z(CVV)/Z(CC'C"), where C, C' and C" denote core levels and V stands for a valence level, are shown to increase progressively with the number of valence electrons in the metal in the case of second-row transition metals and their oxides. Metal Auger intensity ratios in chalcogenides of transition metals can be correlated by taking the effective atomic charge on the metal into consideration. The possible use of metal Auger intensity ratios in the study of surface oxidation of second-row transition metals is illustrated in the case of zirconium.
Resumo:
The stimulation technique has gained much importance in the performance studies of Concurrency Control (CC) algorithms for distributed database systems. However, details regarding the simulation methodology and implementation are seldom mentioned in the literature. One objective of this paper is to elaborate the simulation methodology using SIMULA. Detailed studies have been carried out on a centralised CC algorithm and its modified version. The results compare well with a previously reported study on these algorithms. Here, additional results concerning the update intensiveness of transactions and the degree of conflict are obtained. The degree of conflict is quantitatively measured and it is seen to be a useful performance index. Regression analysis has been carried out on the results, and an optimisation study using the regression model has been performed to minimise the response time. Such a study may prove useful for the design of distributed database systems.
Resumo:
Hydrazinium acetate, metavanadate, sulfite, sulphamate and thiocyanate have been prepared by the reaction of corresponding ammonium salts with hydrazine hydrate. The compounds were characterised by chemical analysis and infrared spectra. Thermal behaviour of these hydrazinium derivatives have been investigated using thermogravimetry and differential thermal analysis.
Resumo:
This feature article describes the recent developments in the design of cationic lipids and their applications in gene delivery. Various structure-activity investigations explaining the variations in gene transfection efficacies with respect to different molecular structures of the cationic lipids have been discussed. Gene transfer abilities are presented in relation to aggregation properties of different aqueous formulations such as cationic liposomes and surfactant aggregates from various amphiphiles and cationic lipids, as a function of their hydrophobic parts, linkers and head groups.
Resumo:
The quasi-aromatic property of metal chelates of thio-beta-diketones has been studied by reacting them with phenylisocyanate, where addition takes place at the gamma-CH in a stepwise manner. Mono-thiodiketonates of Ni(II), Pd(II), cu(II) and Co(III) and the dithio-acetylacetonate of Ni(II) react with phenylisocyanate to produce mono-, di- and triphenylamido [with cobalt (III) only] substituted derivatives. In the case of tris (ethylthioacetoacetato) cobalt (III), it is found that the reaction with phenylisocyanate gives two isomers, a chocolate coloured isomer in which the phenylamido carbonyl is not coordinated while the green coloured isomer has bonding through phenylemido carbonyl oxygen. The reactions of the thiodiketonates have been compared with those of beta-diketonates and beta-ketoiminates. The reaction products have been characterised by elemental analyses, magnetic moments, and electronic, IR and 1H NMR spectral studies.