38 resultados para CAPILLARY ELECTROCHROMATOGRAPHY
Resumo:
An analysis involving a transformation of the velocity potential and a Fourier Sine Transform technique is described to study the effect of surface tension on incoming surface waves against a vertical cliff with a periodic wall perturbation. Known results are recovered as particular cases of the general problem considered. An analytical expression is derived for the surface elevation, at far distances from the shore-line, by using Watson's lemma and a representative table of numerical values of the coefficients of the resulting asymptotic expansion is also presented.
Resumo:
The free energy contribution of capillary waves is calculated to show its significant dependence on the thickness of the liquid layer, when the thickness is very small. It is shown that these oscillations can play an important role in determining the thermodynamic stability of a wetting layer, close to the critical point of a binary liquid mixture in the case of both short range and long range forces. In particular, the thickness of the wetting layer goes to zero as the temperature T approaches Tc.
Resumo:
Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.
Resumo:
We describe two techniques to create sharp tips. The first involves the buckling of thin metal films deposited on soft, stretchable substrates. The second involves the formation of narrow necked capillary bridges.
Resumo:
An experimental investigation of evaporation of a pentane meniscus from a heated capillary slot is presented. A novel aspect of this study is that both the wicking height and steady state evaporation mass flow rate are measured simultaneously. Based on a macroscopic force balance, the apparent contact angle of the evaporating meniscus is experimentally estimated from the wicking height and mass flow rate. This is compared with the results obtained using evaporating thin-film theory. The experimentally estimated contact angle is slightly larger than that obtained from the thin-film model but both show similar trends. Further, it is found that the reduction in the meniscus height is primarily due to an increase in the apparent contact angle. The liquid and vapor pressure drops in the capillary are insignificant relative to the capillary pressure. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.
Resumo:
Studies on melt rheological properties of blends of low density polyethylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported, The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20-30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10 g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends.
Resumo:
The ability of various synthetic peptide analogs of. Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis.
Resumo:
A simple mathematical model depicting blood flow in the capillary is developed with an emphasis on the permeability property of the blood vessel based on Starling's hypothesis. In this study the effect of inertia has been neglected in comparison with the viscosity on the basis of the smallness of the Reynolds number of the flow in the capillary. The capillary blood vessel is approximated by a circular cylindrical tube with a permeable wall. The blood is represented by a couple stress fluid. With such an ideal model the velocity and pressure fields are determined. It is shown that an increase in the couple stress parameter increases the resistance to the flow and thereby decreases the volume rate flow. A comparison of the results with those of the Newtonian case has also been made.
Resumo:
We have shown previously that the Ca2+-specific fluorescent dyes chlortetracycline (CTC) and indo-1/AM can be used to distinguish between prestalk and prespore cells in Dictyostelium discoideum at a very early stage. In the present study, pre- and post-aggregative amoebae of Dictyostelium discoideum were labelled with CTC or indo-1 and their fluorescence monitored after being drawn into a fine glass capillary. The cells rapidly form two zones of Ca2+-CTC or Ca2+-indo-1 fluorescence. Anterior (air side) cells display a high level of fluorescence; the level drops in the middle portion of the capillary and rises again to a lesser extent in the posteriormost cells (oil side). When bounded by air on both sides, the cells display high fluorescence at both ends. When oil is present at both ends of the capillary, there is little fluorescence except for small regions at the ends. These outcomes are evident within a couple of minutes of the start of the experiment and the fluorescence pattern intensifies over the course of time. By using the indicator neutral red, as well as with CTC and indo-1, we show that a band displaying strong fluorescence moves away from the anterior end before stabilizing at the anterior-posterior boundary. We discuss our findings in relation to the role of Ca2+ in cell-type differentiation in Dictyostelium discoideum.
Resumo:
Effective “hydrodynamic” radii governing infiltration kinetics of reactive Al-Mg melts into alumina preforms were found to be three orders of magnitude smaller than the average pore size of the packed bed and also smaller compared with the kinetics for a nonreactive system. A sinusoidal capillary model was developed to predict flow kinetics within the packed bed. For the reactive system, two factors were ascribed for additional melt retardation: (1) different intrinsic wettabilities of the two liquids on alumina, thereby leading to significantly different “effective” local contact angles; and (2) local solute depletion from the meniscus, which was incorporated as a time-dependent contact angle.
Resumo:
The winged bean (Psophocarpus tetragonolobus) agglutinin (total lectin) and its basic (WBA I) and acidic isoform (WBA II) were used to analyze capillaries in sections from human muscle. The microvessels were clearly labeled after incubation with the lectins in both normal muscle and in old muscles with age-related type II atrophy or muscle fiber grouping. Muscle fibers, nerves, and connective tissue remained unstained. The total lectin detected muscle capillaries from all blood group AB0 individuals. The isoform WBA I reacted only with blood vessels in blood group A and B individuals, while the blood vessels in blood group 0 individuals were demonstrated with WBA II. WBA I staining was inhibited by p-nitrophenyl α-galactopyranoside and N-acetylgalactosamine, whereas 2′-fucosyllactose and preincubation with an antibody against type-1 chain H abolished capillary staining with WBA II. The study demonstrates the usefulness of WBA as a marker of capillaries in human muscle.
Resumo:
Benzene drops were formed in continuous media of water and glycerine of varying physical properties. The effect on drop volumes of variables like volumetric flow-rate, interfacial tension, continuous phase viscosity and capillary diameter was studied. An equation has been developed, based on a two stage drop formation mechanism, which predicts drop volumes within an average error of 7 per cent for the range of physical properties employed in this investigation.
Resumo:
With an objective to understand the nature of forces which contribute to the disjoining pressure of a thin water film on a steel substrate being pressed by an oil droplet, two independent sets of experiments were done. (i) A spherical silica probe approaches the three substrates; mica, PTFE and steel, in a 10 mM electrolyte solution at two different pHs (3 and 10). (ii) The silica probe with and without a smeared oil film approaches the same three substrates in water (pH = 6). The surface potential of the oil film/water was measured using a dynamic light scattering experiment. Assuming the capacity of a substrate for ion exchange the total interaction force for each experiment was estimated to include the Derjaguin-Landau-Verwey-Overbeek (DLVO) force, hydration repulsion, hydrophobic attraction and oil-capillary attraction. The best fit of these estimates to the force-displacement characteristics obtained from the two sets of experiment gives the appropriate surface potentials of the substrates. The procedure allows an assessment of the relevance of a specific physical interaction to an experimental configuration. Two of the principal observations of this work are: (i) The presence of a surface at constant charge, as in the presence of an oil film on the probe, significantly enhances the counterion density over what is achieved when both the surfaces allow ion exchange. This raises the corresponding repulsion barrier greatly. (ii) When the substrate surface is wettable by oil, oil-capillary attraction contributes substantially to the total interaction. If it is not wettable the oil film is deformed and squeezed out. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The possible mechanisms of particle aggregation and reduction in liquid limit of the Cochin marine clay on drying are investigated. Mineralogical analysis showed the absence of halloysite in the marine specimen. Experimental results also ruled out the possibility of cementitious material being responsible for particle aggregation and reduction in clay plasticity on drying. The presence of calcium and magnesium as the predominant exchangeable ions and of a high pore salt concentration facilitates strong interparticle attraction and small particle separations; the latter leads to development of significant capillary stresses that permits an intimate contact of particles and growth of strong van der Waals' and Coulombic bonds.