99 resultados para CALDERA COLLAPSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a radial moment field and the square yield criterion, a lower-bound collapse load is developed for a square footing subjected to a generalized contact pressure distribution. The current lower-bound collapse load compares well with the available upper-bound solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of reinforced concrete slabs fixed at the boundaries, considerable enhancement in the load carrying capacity takes place due to compressive membrane action. In this paper a method is presented to analyse the effects of membrane action in fixed orthotropic circular slabs, carrying uniformly distributed loads. Depending on the radial moment capacity being greater or less than the circumferential moment capacity, two cases of orthotropy have been considered. Numerical results are worked out for certain assumed physical parameters and for different coefficients of orthotropy. Variations of load and bending moments with the central deflection are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the analysis and study of voltage collapse at any converter bus in an AC system interconnected by multiterminal DC (MTDC) links. The analysis is based on the use of the voltage sensitivity factor (VSF) as a voltage collapse proximity indicator (VCPI). In this paper the VSF is defined as a matrix which is applicable to MTDC systems. The VSF matrix is derived from the basic steady state equations of the converter, control, DC and AC networks. The structure of the matrix enables the derivation of some of the basic properties which are generally applicable. A detailed case study of a four-terminal MTDC system is presented to illustrate the effects of control strategies at the voltage setting terminal (VST) and other terminals. The controls considered are either constant angle, DC voltage, AC voltage, reactive current and reactive power at the VST and constant power or current at the other terminals. The effect of the strength of the AC system (measured by short circuit ratio) on the VSF is investigated. Several interesting and new results are presented. An analytical expression for the self VSF at VST is also derived for some specific cases which help to explain the number of transitions in VSF around the critical values of SCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The collapse of a spherical (cylindrical) cavity in air is studied analytically. The global solution for the entire domain between the sound front, separating the undisturbed and the disturbed gas, and the vacuum front is constructed in the form of infinite series in time with coefficients depending on an ldquoappropriaterdquo similarity variable. At timet=0+, the exact planar solution for a uniformly moving cavity is assumed to hold. The global analytic solution of this initial boundary value problem is found until the collapse time (=(gamma–1)/2) for gamma le 1+(2/(1+v)), wherev=1 for cylindrical geometry, andv=2 for spherical geometry. For higher values of gamma, the solution series diverge at timet — 2(beta–1)/ (v(1+beta)+(1–beta)2) where beta=2/(gamma–1). A close agreement is found in the prediction of qualitative features of analytic solution and numerical results of Thomaset al. [1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the role of interparticle cementation in the collapse behavior of two partly saturated (S-r = 4 to 12%) and very highly porous (initial void ratio = 1.5 to 2) laboratory-desiccated clayey silt specimens containing varying amounts (5 and 15% by dry weight of the respective specimens) of the cementitious iron oxides hematite and goethite, which are generally encountered in tropical residual soils. Kaolinite is the representative clay mineral of the soil matrix used for this research. Interparticle cementation by the crystalline iron oxides was generated in the laboratory by repeated (six times) wetting and drying of the iron-hydroxide-admixed clayey silt specimens under ambient conditions of temperature and humidity. Results showed that, for a given laboratory-desiccated clayey silt specimen (i.e., a specimen containing 5 or 15% of iron oxide on a dry weight basis), the amount of collapse (represented by Delta epsilon, the change in vertical strain upon wetting under constant pressure) increases with an increase in the experimental loading under which the specimen is inundated. The laboratory results also show that the desiccated specimen with a higher iron oxide content (containing 15% iron oxide by dry weight of the desiccated specimen) in spite of a lower dry unit weight (gamma(d) = 8.8 kN/m(3)) undergoes a lesser amount of collapse on soaking under a constant external stress (50 or 100 kPa) than the desiccated specimen with a lower iron oxide content (i.e., containing 5% iron oxide by dry weight of the desiccated specimen, gamma(d) = 10.4 KN/m(3)). Based on the X-ray diffraction results and the stress-strain relationships obtained from isotropically consolidated undrained triaxial tests, it is suggested that the laboratory-desiccated specimens are characterized by a metastable bonding provided by capillary suction and the crystalline iron oxides. On soaking under load owing to the loss of the metastable bonding, collapse of the laboratory-desiccated specimens occurs. Also, in the case of the laboratory-desiccated specimen with a higher iron oxide content, the presence of a stronger interparticle cementation (due to a greater abundance of crystalline iron oxides) and a higher initial moisture content are considered responsible for the specimen exhibiting a lower amount of collapse in comparison to that exhibited by the desiccated specimen with a lesser iron oxide content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion of a technical note with the aforementioned title by Day and Marsh, published in this journal (Volume 121, Number 7, July 1995), is presented. Discussers Robinson and Allam assert that the authors' application of the pore-pressure parameter A to predict and quantify swell or collapse of compacted soils is hard to use because the authors visualize the collapse-swell phenomenon to occur in compacted soils broadly classified as sands and clays. The literature demonstrates that mineralogy has an important role in the volume change behavior of fine-grained soils. Robinson and Allam state that the A-value measurements may not completely predict the type of volume change anticipated in compacted soils on soaking without soil clay mineralogy details. Discussion is followed by closure from the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the role of microstructure and matric suction in the collapse behavior of a compacted clay soil from Bangalore District in Karnataka State, India. The microstructure of the compacted specimens was examined by mercury intrusion porosimetry (MIP), and the ASTM Filter Paper Method was used to determine their matric suction. The microstructure and matric suction of the compacted specimens were changed by varying their compaction water content, dry density, and clay content (< 2 mum fraction). Experimental results showed that relative abundance of coarse (60 to 6 mum) pores was mainly affected by increasing the dry density of the specimens from 1.49 to 1.77 g/cm(3). The relative abundance of coarse and fine (0.01 to 0.002 mum) pores was affected by increasing the compaction water content from 10.6 to 26.4%. Variations in dry density, compaction water content, and clay contents notably affected the matric suction of the compacted specimens. The collapse behavior of the compacted specimens is explained from analysis of the MIP and matric suction results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary mixtures have strong influence on activities of polymers and biopolymers even at low cosolvent concentration. Among the several aqueous binary mixtures studied, water-DMSO especially stands out for its unusual behavior at certain specific concentrations of DMSO. In the present work, we study the effect of water-DMSO binary mixture on polymers and biopolymers by taking a simple linear hydrocarbon chain of intermediate length (n = 30) and the protein lysozyme, respectively. We find that at a mole fraction of 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, the hydrocarbon chain adopts the collapsed conformation as the most stable and rigid state. In this case of 0.05 mole fraction of DMSO in bulk, the DMSO concentration in the first hydration layer around the polymer is found to be as large as 17%. Formation of such hydrophobic environment around the polymer is the reason for the collapsed state gaining so much stability. Interestingly, similar quench of conformational fluctuation is also observed for the protein investigated. It is observed that in the case of alkane polymer chains, long wavelength fluctuation gets easily quenched, the polymer being purely hydrophobic. However, in case of the protein, quench of fluctuation is prominent only at the hydrophobic surface, and quench of long wavelength fluctuation becomes insignificant for the full protein. As protein contains both hydrophobic and hydrophilic moieties, the extent of quench of conformational fluctuation with respect to that in pure water is almost half for the biopolymer complex (16.83%) than the same for pure hydrophobic polymer chain (32.43%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) approximate to 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) approximate to 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the collapse of a fuzzy sphere, that is a spherical membrane built out of D0-branes, in the Banks-Fischler-Shenker-Susskind model. At weak coupling, as the sphere shrinks, open strings are produced. If the initial radius is large then open string production is not important and the sphere behaves classically. At intermediate initial radius the backreaction from open string production is important but the fuzzy sphere retains its identity. At small initial radius the sphere collapses to form a black hole. The crossover between the later two regimes is smooth and occurs at the correspondence point of Horowitz and Polchinski.