302 resultados para Binary Image Representation
Resumo:
Template matching is concerned with measuring the similarity between patterns of two objects. This paper proposes a memory-based reasoning approach for pattern recognition of binary images with a large template set. It seems that memory-based reasoning intrinsically requires a large database. Moreover, some binary image recognition problems inherently need large template sets, such as the recognition of Chinese characters which needs thousands of templates. The proposed algorithm is based on the Connection Machine, which is the most massively parallel machine to date, using a multiresolution method to search for the matching template. The approach uses the pyramid data structure for the multiresolution representation of templates and the input image pattern. For a given binary image it scans the template pyramid searching the match. A binary image of N × N pixels can be matched in O(log N) time complexity by our algorithm and is independent of the number of templates. Implementation of the proposed scheme is described in detail.
Resumo:
Symmetry?adapted linear combinations of valence?bond (VB) diagrams are constructed for arbitrary point groups and total spin S using diagrammatic VB methods. VB diagrams are related uniquely to invariant subspaces whose size reflects the number of group elements; their nonorthogonality leads to sparser matrices and is fully incorporated into a binary integer representation. Symmetry?adapated linear combinations of VB diagrams are constructed for the 1764 singlets of a half?filled cube of eight sites, the 2.8 million ??electron singlets of anthracene, and for illustrative S?0 systems.
Resumo:
This paper presents recursive algorithms for fast computation of Legendre and Zernike moments of a grey-level image intensity distribution. For a binary image, a contour integration method is developed for the evaluation of Legendre moments using only the boundary information. A method for recursive calculation of Zernike polynomial coefficients is also given. A square-to-circular image transformation scheme is introduced to minimize the computation involved in Zernike moment functions. The recursive formulae can also be used in inverse moment transforms to reconstruct the original image from moments. The mathematical framework of the algorithms is given in detail, and illustrated with binary and grey-level images.
Resumo:
The applicability of a formalism involving an exponential function of composition x1 in interpreting the thermodynamic properties of alloys has been studied. The excess integral and partial molar free energies of mixing are expressed as: $$\begin{gathered} \Delta F^{xs} = a_o x_1 (1 - x_1 )e^{bx_1 } \hfill \\ RTln\gamma _1 = a_o (1 - x_1 )^2 (1 + bx_1 )e^{bx_1 } \hfill \\ RTln\gamma _2 = a_o x_1^2 (1 - b + bx_1 )e^{bx_1 } \hfill \\ \end{gathered} $$ The equations are used in interpreting experimental data for several relatively weakly interacting binary systems. For the purpose of comparison, activity coefficients obtained by the subregular model and Krupkowski’s formalism have also been computed. The present equations may be considered to be convenient in describing the thermodynamic behavior of metallic solutions.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
Functional dependencies in relational databases are investigated. Eight binary relations, viz., (1) dependency relation, (2) equipotence relation, (3) dissidence relation, (4) completion relation, and dual relations of each of them are described. Any one of these eight relations can be used to represent the functional dependencies in a database. Results from linear graph theory are found helpful in obtaining these representations. The dependency relation directly gives the functional dependencies. The equipotence relation specifies the dependencies in terms of attribute sets which functionally determine each other. The dissidence relation specifies the dependencies in terms of saturated sets in a very indirect way. Completion relation represents the functional dependencies as a function, the range of which turns out to be a lattice. Depletion relation which is the dual of the completion relation can also represent functional dependencies and similarly can the duals of dependency, equipotence, and dissidence relations. The class of depleted sets, which is the dual of saturated sets, is defined and used in the study of depletion relations.
Resumo:
Quantization formats of four digital holographic codes (Lohmann,Lee, Burckhardt and Hsueh-Sawchuk) are evaluated. A quantitative assessment is made from errors in both the Fourier transform and image domains. In general, small errors in the Fourier amplitude or phase alone do not guarantee high image fidelity. From quantization considerations, the Lee hologram is shown to be the best choice for randomly phase coded objects. When phase coding is not feasible, the Lohmann hologram is preferable as it is easier to plot.
Resumo:
The low-frequency (5–100 kHz) dielectric constant epsilon (Porson) has been measured in the temperature range 7 × 10−5 < t = (T − Tc)/Tc < 8 × 10−2. Near Tc an exponent ≈0.11 characterizes the power law behaviour of Image consistent with the theoretically predicted t−α singularity. However, over the full range of t an exponent ≈0.35 is obtained.
Resumo:
Construction of Huffman binary codes for WLN symbols is described for the compression of a WLN file. Here, a parenthesized representation of the tree structure is used for computer encoding.
Resumo:
The signal-to-noise (S/N) ratio in the reconstructed image from a binary hologram has been quantitatively related to the amplitude and phase quantization levels. The S/N ratio increases monotonically with increasing number of quantization levels. This observation is further supported by experimental results.
Resumo:
In this paper the approach for automatic road extraction for an urban region using structural, spectral and geometric characteristics of roads has been presented. Roads have been extracted based on two levels: Pre-processing and road extraction methods. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, parking lots, vegetation regions and other open spaces). The road segments are then extracted using Texture Progressive Analysis (TPA) and Normalized cut algorithm. The TPA technique uses binary segmentation based on three levels of texture statistical evaluation to extract road segments where as, Normalizedcut method for road extraction is a graph based method that generates optimal partition of road segments. The performance evaluation (quality measures) for road extraction using TPA and normalized cut method is compared. Thus the experimental result show that normalized cut method is efficient in extracting road segments in urban region from high resolution satellite image.
Resumo:
This paper describes a hardware implementation of a two-way converter logic by which conversion between numbers from positive to negative binary representation is possible. Index terms: (i) Negative radix, (ii) Positive radix, (iii) Two-way conversion.
Resumo:
This paper presents a general methodology for the synthesis of the external boundary of the workspaces of a planar manipulator with arbitrary topology. Both the desired workspace and the manipulator workspaces are identified by their boundaries and are treated as simple closed polygons. The paper introduces the concept of best match configuration and shows that the corresponding transformation can be obtained by using the concept of shape normalization available in image processing literature. Introduction of the concept of shape in workspace synthesis allows highly accurate synthesis with fewer numbers of design variables. This paper uses a new global property based vector representation for the shape of the workspaces which is computationally efficient because six out of the seven elements of this vector are obtained as a by-product of the shape normalization procedure. The synthesis of workspaces is formulated as an optimization problem where the distance between the shape vector of the desired workspace and that of the workspace of the manipulator at hand are minimized by changing the dimensional parameters of the manipulator. In view of the irregular nature of the error manifold, the statistical optimization procedure of simulated annealing has been used. A number of worked-out examples illustrate the generality and efficiency of the present method. (C) 1998 Elsevier Science Ltd. All rights reserved.