22 resultados para Bayesian inference on precipitation
Resumo:
In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.
Resumo:
Climate change is expected to influence extreme precipitation which in turn might affect risks of pluvial flooding. Recent studies on extreme rainfall over India vary in their definition of extremes, scales of analyses and conclusions about nature of changes in such extremes. Fingerprint-based detection and attribution (D&A) offer a formal way of investigating the presence of anthropogenic signals in hydroclimatic observations. There have been recent efforts to quantify human effects in the components of the hydrologic cycle at large scales, including precipitation extremes. This study conducts a D&A analysis on precipitation extremes over India, considering both univariate and multivariate fingerprints, using a standardized probability-based index (SPI) from annual maximum one-day (RX1D) and five-day accumulated (RX5D) rainfall. The pattern-correlation based fingerprint method is used for the D&A analysis. Transformation of annual extreme values to SPI and subsequent interpolation to coarser grids are carried out to facilitate comparison between observations and model simulations. Our results show that in spite of employing these methods to address scale and physical processes mismatch between observed and model simulated extremes, attributing changes in regional extreme precipitation to anthropogenic climate change is difficult. At very high (95%) confidence, no signals are detected for RX1D, while for the RX5D and multivariate cases only the anthropogenic (ANT) signal is detected, though the fingerprints are in general found to be noisy. The findings indicate that model simulations may underestimate regional climate system responses to increasing human forcings for extremes, and though anthropogenic factors may have a role to play in causing changes in extreme precipitation, their detection is difficult at regional scales and not statistically significant. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
Background: The number of genome-wide association studies (GWAS) has increased rapidly in the past couple of years, resulting in the identification of genes associated with different diseases. The next step in translating these findings into biomedically useful information is to find out the mechanism of the action of these genes. However, GWAS studies often implicate genes whose functions are currently unknown; for example, MYEOV, ANKLE1, TMEM45B and ORAOV1 are found to be associated with breast cancer, but their molecular function is unknown. Results: We carried out Bayesian inference of Gene Ontology (GO) term annotations of genes by employing the directed acyclic graph structure of GO and the network of protein-protein interactions (PPIs). The approach is designed based on the fact that two proteins that interact biophysically would be in physical proximity of each other, would possess complementary molecular function, and play role in related biological processes. Predicted GO terms were ranked according to their relative association scores and the approach was evaluated quantitatively by plotting the precision versus recall values and F-scores (the harmonic mean of precision and recall) versus varying thresholds. Precisions of similar to 58% and similar to 40% for localization and functions respectively of proteins were determined at a threshold of similar to 30 (top 30 GO terms in the ranked list). Comparison with function prediction based on semantic similarity among nodes in an ontology and incorporation of those similarities in a k nearest neighbor classifier confirmed that our results compared favorably. Conclusions: This approach was applied to predict the cellular component and molecular function GO terms of all human proteins that have interacting partners possessing at least one known GO annotation. The list of predictions is available at http://severus.dbmi.pitt.edu/engo/GOPRED.html. We present the algorithm, evaluations and the results of the computational predictions, especially for genes identified in GWAS studies to be associated with diseases, which are of translational interest.
Resumo:
Recent axiomatic derivations of the maximum entropy principle from consistency conditions are critically examined. We show that proper application of consistency conditions alone allows a wider class of functionals, essentially of the form ∝ dx p(x)[p(x)/g(x)] s , for some real numbers, to be used for inductive inference and the commonly used form − ∝ dx p(x)ln[p(x)/g(x)] is only a particular case. The role of the prior densityg(x) is clarified. It is possible to regard it as a geometric factor, describing the coordinate system used and it does not represent information of the same kind as obtained by measurements on the system in the form of expectation values.
Resumo:
Downscaling to station-scale hydrologic variables from large-scale atmospheric variables simulated by general circulation models (GCMs) is usually necessary to assess the hydrologic impact of climate change. This work presents CRF-downscaling, a new probabilistic downscaling method that represents the daily precipitation sequence as a conditional random field (CRF). The conditional distribution of the precipitation sequence at a site, given the daily atmospheric (large-scale) variable sequence, is modeled as a linear chain CRF. CRFs do not make assumptions on independence of observations, which gives them flexibility in using high-dimensional feature vectors. Maximum likelihood parameter estimation for the model is performed using limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization. Maximum a posteriori estimation is used to determine the most likely precipitation sequence for a given set of atmospheric input variables using the Viterbi algorithm. Direct classification of dry/wet days as well as precipitation amount is achieved within a single modeling framework. The model is used to project the future cumulative distribution function of precipitation. Uncertainty in precipitation prediction is addressed through a modified Viterbi algorithm that predicts the n most likely sequences. The model is applied for downscaling monsoon (June-September) daily precipitation at eight sites in the Mahanadi basin in Orissa, India, using the MIROC3.2 medium-resolution GCM. The predicted distributions at all sites show an increase in the number of wet days, and also an increase in wet day precipitation amounts. A comparison of current and future predicted probability density functions for daily precipitation shows a change in shape of the density function with decreasing probability of lower precipitation and increasing probability of higher precipitation.
Resumo:
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.
Resumo:
The precipitation by Relaxed Arakawa-Schubert cumulus parameterization in a General Circulation Model (GCM) is sensitive to the choice of relaxation parameter or specified cloud adjustment time scale. In the present study, we examine sensitivity of simulated precipitation to the choice of cloud adjustment time scale (tau(adj)) over different parts of the tropics using National Center for Environmental Prediction (NCEP) Seasonal Forecast Model (SFM) during June-September. The results show that a single specified value of tau(adj) performs best only over a particular region and different values are preferred over different parts of the world. To find a relation between tau(adj) and cloud depth (convective activity) we choose six regions over the tropics. Based on the observed relation between outgoing long-wave radiation and tau(adj), we propose a linear cloud-type dependent relaxation parameter to be used in the model. The simulations over most parts of the tropics show improved results due to this newly formulated cloud-type dependent relaxation parameter.
Resumo:
CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.
Resumo:
Detecting and quantifying the presence of human-induced climate change in regional hydrology is important for studying the impacts of such changes on the water resources systems as well as for reliable future projections and policy making for adaptation. In this article a formal fingerprint-based detection and attribution analysis has been attempted to study the changes in the observed monsoon precipitation and streamflow in the rain-fed Mahanadi River Basin in India, considering the variability across different climate models. This is achieved through the use of observations, several climate model runs, a principal component analysis and regression based statistical downscaling technique, and a Genetic Programming based rainfall-runoff model. It is found that the decreases in observed hydrological variables across the second half of the 20th century lie outside the range that is expected from natural internal variability of climate alone at 95% statistical confidence level, for most of the climate models considered. For several climate models, such changes are consistent with those expected from anthropogenic emissions of greenhouse gases. However, unequivocal attribution to human-induced climate change cannot be claimed across all the climate models and uncertainties in our detection procedure, arising out of various sources including the use of models, cannot be ruled out. Changes in solar irradiance and volcanic activities are considered as other plausible natural external causes of climate change. Time evolution of the anthropogenic climate change ``signal'' in the hydrological observations, above the natural internal climate variability ``noise'' shows that the detection of the signal is achieved earlier in streamflow as compared to precipitation for most of the climate models, suggesting larger impacts of human-induced climate change on streamflow than precipitation at the river basin scale.
Resumo:
The main objective of the study is to examine the accuracy of and differences among simulated streamflows driven by rainfall estimates from a network of 22 rain gauges spread over a 2,170 km2 watershed, NEXRAD Stage III radar data, and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite data. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA), a physically based, distributed parameter, grid-structured, hydrologic model, was used to simulate the June-2002 flooding event in the Upper Guadalupe River watershed in south central Texas. There were significant differences between the rainfall fields estimated by the three types of measurement technologies. These differences resulted in even larger differences in the simulated hydrologic response of the watershed. In general, simulations driven by radar rainfall yielded better results than those driven by satellite or rain-gauge estimates. This study also presents an overview of effects of land cover changes on runoff and stream discharge. The results demonstrate that, for major rainfall events similar to the 2002 event, the effect of urbanization on the watershed in the past two decades would not have made any significant effect on the hydrologic response. The effect of urbanization on the hydrologic response increases as the size of the rainfall event decreases.
Resumo:
We report on the synthesis, microstructure and thermal expansion studies on Ca0 center dot 5 + x/2Sr0 center dot 5 + x/2Zr4P6 -aEuro parts per thousand 2x Si-2x O-24 (x = 0 center dot 00 to 1 center dot 00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to x = 0 center dot 37. For x a parts per thousand yen 0 center dot 5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 A degrees C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at x = 0 center dot 75. The amount of hysteresis between heating and cooling curves increases progressively from x = 0 center dot 00 to 0 center dot 37 and then decreases for x > 0 center dot 37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.
Resumo:
In this paper, we consider the inference for the component and system lifetime distribution of a k-unit parallel system with independent components based on system data. The components are assumed to have identical Weibull distribution. We obtain the maximum likelihood estimates of the unknown parameters based on system data. The Fisher information matrix has been derived. We propose -expectation tolerance interval and -content -level tolerance interval for the life distribution of the system. Performance of the estimators and tolerance intervals is investigated via simulation study. A simulated dataset is analyzed for illustration.
Resumo:
The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.