50 resultados para BINARY CATALYST SYSTEMS
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
For five binary liquid systems CS2+CH3CN, CS2+CH3NO2, CS2+(CH3CO)2O, C6H12+(CH3CO)2O, n-C7H16+(CH3CO)2O, the electrical resistance has been measured near the critical solution temperatures. The behaviour is universal. Below Tc, the conductivities of the two phases follow σ1−σ2 β, where = T−Tc Tc with β≈0.35. In the one phase region with b≈0.35±0.1 and is positive in some cases and negative in others.
Resumo:
Scaling relations between the critical indices are derived for two similar systems exhibiting λ lines: binary liquid systems and ferromagnets under pressure. In addition to the usual scaling relations, this procedure gives information about other weakly divergent quantities like isothermal compressibility and thermal expansion. Suggestions for more detailed investigations are made.
Resumo:
The behavior of electrical resistivity in the critical region of three polar + nonpolar binary liquid systems CS2 +(CH3CO)2O, C6H12+(CH3CO)2O, and n‐C7H16+(CH3CO)2O is studied. For the mixtures with critical composition, the two phase region shows a conductivity behavior with σ1−σ2∼ (−ϵ)β with β?0.35. In the one phase region dR/dT has a singularity ϵ−b with b?0.35. A possible theory of the impurity conduction is given, which broadly explains these results. The possibility of dR/dT being positive or negative is also discussed.
Resumo:
The critical resistivity in the binary liquid systems n-C7H16 + CH3OH and CS2 + CH3NO2 is measured from 10 Hz to 100 kHz. There is no noticeable effect of the frequency on the resistivity singularities. Thus any contribution from dielectric dispersion is not appreciable.
Resumo:
In the present work the integral diffusion coefficients are estimated by using the diaphragm cell technique. The diffusion coefficients are measured at various compositions for two sets binary systems: one of cyclohexane and n-paraffinic alcohols and the other of methylcyclohexane and n-paraffinic alcohols. The alcohols used are seven members of homologous series of n-paraffinic alcohols from ethanol to octanol. The maximum possible error in the experimental diffusion coefficient could be 8% for both the cyclohexane-n-alkyl alcohol system and methylcyclohexane-n-alkyl alcohol system. A correlation for each of the two sets of binary systems is given. The maximum deviation in the correlations was less than 6.5 and 3.5% for cyclohexane-n-alkyl alcohols and methylcyclohexane-n-alkyl alcohols, respectively.
Resumo:
The mutual diffusion coefficients for binary liquid systems of benzene-n-alkyl alcohol at various compositions have been determined by the diaphragm cell method at 28-degrees-C. The alcohols used were the members of n-paraffinic alcohols ranging from C1 to C8. The maximum possible experimental error is 14%. The data were fitted with a generalized correlation, giving the deviation from the experimental data to within 2.75%, on average.
Resumo:
The pressure dependence of critical parameters xc, Tc, and β have been analysed in four systems namely cyclohexane + acetic anhydride, n-heptane + acetic anhydride, methanol + n-heptane, and carbon disulphide + acetonitrile. The separation temperature was found to increase linearly with pressure the value of dTc/dP being 28 mK, 11 mK, 22 mK, and 25 mK respectively. These are in fair agreement with earlier measurements available for two systems. For the methanol + n-heptane system dTc/dP is apparently not consistent with the value predicted from the specific heat and thermal expansion data.Die Druckabhängigkeit der kritischen Parameter xc, Tc und β ist in den vier Systemen Cyclohexan + Essigsäureanhydrid, n-Heptan + Essigsäureanhydrid, Methanol + n-Heptan und Schwefelkohlenstoff + Acetonitril analysiert worden. Es wurde gefunden, daß die kritische Temperatur linear mit dem Druck ansteigt. Die Werte für dTc/dP betragen 28 mK, 11 mK, 22 mK und 25 mK. Sie sind in guter überein-stimmung mit früheren Messungen an zweien dieser Systeme. Für Methanol + n-Heptan stimmt der Wert für dT/dP offensichtlich nicht mit Werten, die mit Hilfe von Daten für die spezifische Wärme und die thermische Ausdehnung vorhergesagt wurden, überein.
Resumo:
The use of binary fluid systems in thermally driven vapour absorption and mechanically driven vapour compression refrigeration and heatpump cycles has provided an impetus for obtaining experimental date on caloric properties of such fluid mixtures. However, direct measurements of these properties are somewhat scarce in spite of the calorimetric techniques described in the literature being quite adequate. Most of the design data are derived through calculations using theoretical models and vapour-liquid equilibrium data. This article addresses the choice of working fluids and the current status on the data availability vis-a-vis engineering applications. Particular emphasis is on organic working fluid pairs.
Resumo:
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(T −T c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dT ∼t −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.
Resumo:
The electrical resistance is measured in two binary liquid systems CS2 + CH3NO2 and n-C7H16 + CH3OH in the critical region as a function of frequency from 10 Hz to 100 kHz. The critical exponent b ≈ 0.35 in the singularity of dR/dT α (T - Tc)−b near Tc has no appreciable dependence upon the frequency. Thus any contribution from dielectric dispersion to the critical resistivity is not appreciable. The universal behaviour of the dR/dT anomaly does not seem to be followed in binary liquid systems.
Resumo:
In this study, bulk and multifoil diffusion couple experiments were conducted to examine the interdiffusion process in Ni-Pt and Co-Pt binary alloy systems. Inter-, intrinsic-, and tracer-diffusion coefficients at different temperatures, and as a function of the composition, were estimated by using the experimental data. Results show that in both the alloy systems, Pt is the slower diffusing species, and hence the interdiffusion process is controlled by either Ni or Co. The thermodynamic driving force makes the intrinsic diffusion coefficients of Co and Ni higher in the range of 30-70 at.%. The low activation energy for Co and Ni impurity diffusion in Pt compared with Pt in Ni and Co indicates that the size of the atoms plays an important role. The vacancy wind effects on the diffusion process are examined in detail, and it was demonstrated that its contribution falls within the experimental scatter and hence can be neglected.
Resumo:
This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.