59 resultados para BACTERIAL INFECTIONS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the dawn of civilization, natural resources have remained the mainstay of various remedial approaches of humans vis-a-vis a large number of illnesses. Saraca asoca (Roxb.) de Wilde (Saraca indica L.) belonging to the family Caesalpiniaceae has been regarded as a universal panacea in old Indian Ayurvedic texts and has especially been used to manage gynaecological complications and infections besides treating haemmorhagic dysentery, uterine pain, bacterial infections, skin problems, tumours, worm infestations, cardiac and circulatory problems. Almost all parts of the plant are considered pharmacologically valuable. Extensive folkloric practices and ethnobotanical applications of this plant have even lead to the availability of several commercial S. asoca formulations recommended for different indications though adulteration of these remains a pressing concern. Though a wealth of knowledge on this plant is available in both the classical and modern literature, extensive research on its phytomedicinal worth using state-of-the-art tools and methodologies is lacking. Recent reports on bioprospecting of S. asoca endophytic fungi for industrial bioproducts and useful pharmacologically relevant metabolites provide a silver lining to uncover single molecular bio-effectors from its endophytes. Here, we describe socio-ethnobotanical usage, present the current pharmacological status and discuss potential bottlenecks in harnessing the proclaimed phytomedicinal worth of this prescribed Ayurvedic medicinal plant. Finally, we also look into the possible future of the drug discovery and pharmaceutical R&D efforts directed at exploring its pharma legacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The genome of a wide variety of prokaryotes contains the luxS gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms. Results The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies. Conclusion The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the luxS gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phosphatase catalysing the hydrolysis of organophosphorus pesticides was purified to homogeneity using Cibacron 3GA-Sepharose CL 6B affinity chromatography. The enzyme which is localized in the periplasm of the bacterium Image NC5 was extracted by treating with 0.2M MgCl2, pH 8.4. The enzyme was adsorbed to the Cibacron-Sepharose at pH 7.0 and eluted with Tris-HCl buffer at pH 8.0, with 47 per cent recovery. The enzyme thus obtained was electrophoretically homogeneous. This simple affinity purification procedure enhances the potential for its use in large scale detoxification systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The product of the bglG gene of Escherichia coli was among the first bacterial antiterminators to be identified and characterized. Since the elucidation ten years ago of its role in the regulation of the bgl operon of E. coli,a large number of homologies have been discovered in both Gram-positive and Gram-negative bacteria. Often the homologues of BglG in other organisms are also involved in regulating β-glucoside utilization. Surprisingly, in many cases, they mediate antitermination to regulate a variety of other catabolic functions. Because of the high degree of conservation of the cis-acting regulatory elements, antiterminators from one organism can function in another. Generally the antiterminator protein itself is negatively regulated by phosphorylation by a component of the phosphotransferase system. This family of proteins thus represents a highly evolved regulatory system that is conserved across evolutionarily distant genuses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunoscreening approach was used to isolate a strongly positive cDNA clone from an Entamoeba histolytica HK-9 cDNA expression library in the phage vector lambda ZAP-II. The 1.85-kb cDNA insert was found to be truncated and encoded the cysteine-rich, immunodominant domain of the antigenic 170-kDa subunit of the amebal galactose N-acetylgalactosamine binding lectin. This domain was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Inclusion bodies of the recombinant protein were solubilized with Sarkosyl, and the protein was enriched from the crude bacterial extract by thiol-affinity chromatography. The recombinant protein was used to develop a rapid, sensitive, and specific avidin-biotin microtiter enzyme-linked immunosorbent assay (ELISA) for invasive amebiasis. Sera from 38 individuals suffering from invasive amebiasis, 12 individuals with noninvasive amebiasis, 44 individuals with other infections, and 27 healthy subjects were screened by the recombinant antigen-based ELISA. The sensitivity and specificity of the assay were 90.4 and 94.3%, respectively, which correlated well with those of an ELISA developed with crude amebal antigen (r = 0.94; P < 0.0001), as well as with those of a commercially available serodiagnostic ELISA (r = 0.92; P < 0.0001). Thus, the bacterially expressed recombinant lectin can replace the crude amebal extract as an antigen in the serodiagnosis of invasive amebiasis by using avidin-biotin microtiter ELISA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastrointestinal infections with Salmonella enterica serovars have different clinical outcomes that range from localized inflammation to a life-threatening systemic disease in the case of typhoid fever. Using a mouse model of systemic salmonellosis, we investigated the contribution of neutrophils to the innate immune defense against Salmonella after oral infection. Neutrophil infiltration was dependent on the bacterial burden in various infected organs (Peyer's patches, mesenteric lymph nodes, spleen, and liver). However, the massive infiltration of neutrophils did not allow clearance of an infection with wild-type Salmonella, presumably due to protection of intracellular Salmonella against neutrophil activities. A Salmonella mutant strain deficient in Salmonella pathogenicity island 2 (SPI2) was able to infect systemic sites, but its replication was highly restricted and it did not cause detectable attraction of neutrophils. Neutrophil depletion by antibody treatment of mice did not restore the virulence of SPI2 or auxotrophic mutant strains, supporting the hypothesis that attenuation of the strains is not due to greater susceptibility to neutrophil killing. Our observations reveal that neutrophils have completely different roles during systemic salmonellosis and localized gastrointestinal infections. In the latter conditions, rapid neutrophil attraction efficiently prevents the spread of the pathogen, whereas the neutrophil influx is delayed during systemic infections and cannot protect against lethal bacteremia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of translation in eubacteria and organelles is thought to be similar. In eubacteria, the three initiation factors IF1, IF2, and IF3 are vital. Although the homologs of IF2 and IF3 are found in mammalian mitochondria, an IF1 homolog has never been detected. Here, we show that bovine mitochondrial IF2 (IF2mt) complements E. coli containing a deletion of the IF2 gene (E. coli ΔinfB). We find that IF1 is no longer essential in an IF2mt-supported E. coli ΔinfB strain. Furthermore, biochemical and molecular modeling data show that a conserved insertion of 37 amino acids in the IF2mt substitutes for the function of IF1. Deletion of this insertion from IF2mt supports E. coli for the essential function of IF2. However, in this background, IF1 remains essential. These observations provide strong evidence that a single factor (IF2mt) in mammalian mitochondria performs the functions of two eubacterial factors, IF1 and IF2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria play a vital role in bringing about Mn(II) oxidation in the natural environment. A study was conducted to identify the potential threat offered by these bacteria in bringing about biomineralisation of manganese dioxide on titanium surfaces exposed to seawater. During the study it was observed that the bacteria such as Pseudomonas and Bacillus formed brown colonies on agar plates amended with Mn2+ indicating their ability to oxidize Mn(II). These colonies showed distinct morphologies when grown on plates containing Mn(II) while they formed normal colonies in the absence of Mn.(II).Hence it is possible that these morphologically distinct structures produced by the bacterial colonies assist these bacteria to perform this function of Mn-oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.