147 resultados para Azo compounds.
Resumo:
Three inorganic-organic hybrid framework cadmium thiosulfate phases have been investigated for adsorption and photodegradation of organic dye molecules. Different classes of organic dyes, viz., triaryl methane, azo, xanthene, anthraquinone, have been studied. The anionic dyes with sulfonate groups appear to readily adsorb on the cadmium thiosulfate compounds in an aqueous medium. The adsorption of the dye molecules, however, does not create any structural changes on the cadmium thiosulfate compounds, though weak electronic interactions have been observed. The adsorbed dyes have been desorbed partially in an alcoholic medium, suggesting possible applications in scavenging specific anionic dyes from the aqueous solutions. Langmuir adsorption/desorption isotherms have been used to model this behavior. UV-assisted (lambda(max) = 365 nm) photocatalytic decomposition studies on the cationic dyes indicate reasonable activity comparable with that of Degussa P-25 (TiO2) catalyst. Sunlight assisted photocatalyti studies have been carried out in detail employing hybrid framework compounds. The Langmuir-Hinshelwood kinetics model, employed to follow the degradation profile of the organic dyes, indicates that the photocatalytic degradation follows the order: triaryl methane > azo > xanthene.
Resumo:
A novel test of recent theories of the origin of optical activity has been designed based on the inclusion of certain alkyl 2-methylhexanoates into urea channels.
Resumo:
In this paper, inhibition of the glutathione peroxidase activity of two synthetic organoselenium compounds, bis[2-(N,N-dimethylamino)benzyl]diselenide (5) and bis[2-(N,N-dimethylamino)benzyl]selenide (9), by gold(I) thioglucose (1), chloro(triethylphosphine)gold(I), chloro(trimethylphosphine)gold(I), and chloro(triphenylphosphine)gold(I) is described. The inhibition is found to be competitive with respect to a peroxide (H2O2) substrate and noncompetitive with respect to a thiol (PhSH) cosubstrate. The diselenide 5 reacts with PhSH to produce the corresponding selenol (6), which upon treatment with 1 equiv of gold(I) chlorides produces the corresponding gold selenolate complexes 11−13. However, the addition of 1 equiv of selenol 6 to complexes 11−13 leads to the formation of bis-selenolate complex 14 by ligand displacement reactions involving the elimination of phosphine ligands. The phosphine ligands eliminated from these reactions are further converted to the corresponding phosphine oxides (R3PO) and selenides (R3PSe). In addition to the replacement of the phosphine ligand by selenol 6, an interchange between two different phosphine ligands is also observed. For example, the reaction of complex 11 having a trimethylphosphine ligand with triphenylphosphine produces complex 13 by phosphine interchange reactions via the formation of intermediates 15 and 16. The reactivity of selenol 6 toward gold(I) phosphines is found to be similar to that of selenocysteine.
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.
Resumo:
The detailed electronic structure of the n-v addition compound H2O·BF3 has been investigated for the first time by a combined use of electron energy loss spectroscopy (EELS) and UV photoelectron spectroscopy (UPS) augmented by MO calculations. The calculated molecular orbital energies of H2O·BF3 agree well with the UPS results and have been used to assign the electronic transitions obtained from EELS and to construct an orbital correlation diagram. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Low temperature fluorination technique is adopted for fluorination of the following sulphur compounds in freon-11 medium (1) Sulphur dioxide (2) Thionyl chloride (3) Sulphuryl chloride (4) Tetrasulphur tetra nitride and (5) Sulphur bromide. All the compounds undergo oxidative fluorination to give rise to sulphur-fluorine compounds except sulphuryl chloride which resists fluorination. Sulphuryl chloride thus behaves as a good solvent medium for fluorination of other reactive compounds like elemental sulphur. Details of the experimental procedures adopted and the identification of the products will be presented.
Resumo:
A two-state model allowing for size disparity between the solvent and the adsorbate is analysed to derive the adsorption isotherm for electrosorption of organic compounds. Explicity, the organic adsorbate is assumed to occupy "n" lattice sites at the interface as compared to "one" by the solvent. The model parameters are the respective permanent and induced dipole moments apart from the nearest neighbour distance. The coulombic interactions due to permanent and induced dipole moments, discreteness of charge effects, and short-range and specific substrate interactions have all been incorporated. The adsorption isotherm is then derived using mean field approximation (MFA) and is found to be more general than the earlier multi-site versions of Bockris and Swinkels, Mohilner et al., and Bennes, as far as the entropy contributions are concerned. The role of electrostatic forces is explicity reflected in the adsorption isotherm via the Gibbs energy of adsorption term which itself is a quadratic function of the electrode charge-density. The approximation implicit in the adsorption isotherm of Mohilner et al. or Bennes is indicated briefly.
Resumo:
A simple three-state model permitting two different configurational states for the solvent, together with one for the organic adsorbate, is analysed to derive the adsorption isotherm. The implications of this model regarding pseudo-two-state and pseudo-Frumkin adsorption isotherms are indicated. A critique of the earlier theory of Bockris, Devanathan and Müller is presented in brief.
Resumo:
The charge at which adsorption of orgamc compounds attains a maximum ( \sigma MAX M) at an electrochenucal interface is analysed using several multi-state models in a hierarchical manner The analysis is based on statistical mechamcal results for the following models (A) two-state site parity, (B) two-state muhl-slte, and (C) three-state site parity The coulombic interactions due to permanent and reduced dipole effects (using mean field approximation), electrostatic field effects and specific substrate interactions have been taken into account. The simplest model in the hierarchy (two-state site parity) yields the exphcit dependence of ( \sigma MAX M) on the permanent dipole moment, polarizability of the solvent and the adsorbate, lattice spacing, effective coordination number, etc Other models in the baerarchy bring to hght the influence of the solvent structure and the role of substrate interactions, etc As a result of this approach, the "composition" of oM.x m terms of the fundamental molecular constants becomes clear. With a view to use these molecular results to maxamum advantage, the derived results for ( \sigma MAX M) have been converted into those involving experimentally observable parameters lake Co, C 1, E N, etc Wherever possible, some of the earlier phenomenologlcal relations reported for ( \sigma MAX M), notably by Parsons, Damaskm and Frumkln, and Trasattl, are shown to have a certain molecular basis, vlz a simple two-state sate panty model.As a corollary to the hxerarcbacal modelling, \sigma MAX M and the potential corresponding to at (Emax) are shown to be constants independent of 0max or Corg for all models The lmphcatlon of our analysis f o r OmMa x with respect to that predicted by the generalized surface layer equation (which postulates Om~ and Ema x varlaUon with 0) is discussed in detail Finally we discuss an passing o M. and the electrosorptlon valency an this context.
Resumo:
The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.
Resumo:
Enthalpy changes of the crystal-plastic and plastic-liquid transitions are related to the temperature range of stability of the plastic phase. Thermodynamics of the plastic state of binary mixtures have been examined. Infrared correlation times, τc, and activation energies have been measured for a few molecules in the plastic state. Molecular tumbling times, τt, have also been measured employing ESR spectra of a spin-probe. Plots of log τc(τt) 1/T are continuous through the plastic-liquid transition. Activation energies for molecular motion seem to vary in the same direction as the ΔH of the plastic-crystal transition. Infrared correlation times of solute molecules in binary solutions in the plastic and the liquid states show interesting variations with solute concentration.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.