84 resultados para Application of Petri nets
Resumo:
An interactive graphics package for modeling with Petri Nets has been implemented. It uses the VT-11 graphics terminal supported on the PDP-11/35 computer to draw, execute, analyze, edit and redraw a Petri Net. Each of the above mentioned tasks can be performed by selecting appropriate items from a menu displayed on the screen. Petri Nets with a reasonably large number of nodes can be created and analyzed using this package. The number of nodes supported may be increased by making simple changes in the program. Being interactive, the program seeks information from the user after displaying appropriate messages on the terminal. After completing the Petri Net, it may be executed step by step and the changes in the number of tokens may be observed on the screen, at each place. Some properties of Petri Nets like safety, boundedness, conservation and redundancy can be checked using this package. This package can be used very effectively for modeling asynchronous (concurrent) systems with Petri Nets and simulating the model by “graphical execution.”
Resumo:
Although incidence matrix representation has been used to analyze the Petri net based models of a system, it has the limitation that it does not preserve reflexive properties (i.e., the presence of selfloops) of Petri nets. But in many practical applications self-loops play very important roles. This paper proposes a new representation scheme for general Petri nets. This scheme defines a matrix called "reflexive incidence matrix (RIM) c which is a combination of two matrices, a "base matrix Cb,,, and a "power matrix CP." This scheme preserves the reflexive and other properties of the Petri nets. Through a detailed analysis it is shown that the proposed scheme requires less memory space and less processing time for answering commonly encountered net queries compared to other schemes. Algorithms to generate the RIM from the given net description and to decompose RIM into input and output function matrices are also given. The proposed Petri net representation scheme is very useful to model and analyze the systems having shared resources, chemical processes, network protocols, etc., and to evaluate the performance of asynchronous concurrent systems.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
Distributed computing systems can be modeled adequately by Petri nets. The computation of invariants of Petri nets becomes necessary for proving the properties of modeled systems. This paper presents a two-phase, bottom-up approach for invariant computation and analysis of Petri nets. In the first phase, a newly defined subnet, called the RP-subnet, with an invariant is chosen. In the second phase, the selected RP-subnet is analyzed. Our methodology is illustrated with two examples viz., the dining philosophers' problem and the connection-disconnection phase of a transport protocol. We believe that this new method, which is computationally no worse than the existing techniques, would simplify the analysis of many practical distributed systems.
Resumo:
The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.
Resumo:
In this paper, we develop a theorem that enables computation of the place invariants of the union of a finite collection of coloured Petri Nets when the individual nets satisfy certain conditions and their invariants are known. We consider the illustrative examples of the Readers-Writers problem, a resource sharing system, and a network of databases and show how this theorem is a valuable tool in the analysis of concurrent systems.
Resumo:
We present through the use of Petri Nets, modeling techniques for digital systems realizable using FPGAs. These Petri Net models are used for logic validation at the logic design phase. The technique is illustrated by modeling practical circuits. Further, the utility of the technique with respect to timing analysis of the modeled digital systems is considered. Copyright (C) 1997 Elsevier Science Ltd
Resumo:
The solubilization of bilirubin IX-Alpha in aqueous solution by sodium cholate micelles has been examined by 270 MHz 1H-NMR spectroscopy. Incorporation of bilirubin into the micelles is accompanied by specific shifts of bilirubin vinyl and bridgehead protons and the C18 and C19 methyl groups of the steroid. The observed chemical shifts show a monotonic concentration dependence suggesting that changes in aggregation size are continuous. Nuclear Overhauser effects (NOE) have been shown to be a useful probe or micellization. A 4:1 cholate/bilirubin mixture has been investigated by difference NOE spectroscopy. The observation of intermolecular nuclear Overhauser effects between peripheral protons of bilirubin and cholate are diagnostic of spatially proximate groups. Inter-cholate nuclear Overhauser effects increase in magnitude upon bilirubin incorporation suggesting closer packing of steroid molecules on solubilization of the pigment. Intramolecular nuclear Overhauser effects observed for solubilized bilirubin are consistent with a compact intramolecularly hydrogen-bonded conformation resembling that determined for bilirubin in the solid state.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
In the simple theory of flexure of beams, the slope, bending moment, shearing force, load and other quantities are functions of a derivative of y with respect to x. It is shown that the elastic curve of a transversely loaded beam can be represented by the Maclaurin series. Substitution of the values of the derivatives gives a direct solution of beam problems. In this paper the method is applied to derive the Theorem or three moments and slope deflection equations. The method is extended to the solution of a rigid portal frame. Finally the method is applied to deduce results on which the moment distribution method of analyzing rigid frames is based.
Resumo:
Values of Ko, Flory constant related to unperturbed dimensions, are evaluated for methyl methacrylate-acrylonitrile random copolymers using Flory-Fox, Kurata-Stockmayer and Inagaki-Ptitsyn methods and compared with the Ko values obtained by Stockmayer-Fixman method. Ko values are seen to be less in solvents which have large a (Mark-Houwink exponent) values. A correlation between Ko and a is developed to arrive at a more reliable estimate of Ko for this copolymer system.
Resumo:
The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.