111 resultados para Adsorption of benzene
Resumo:
Based on XPS and UVPS studies, it is shown that oxygen is preferentially adsorbed molecularly in the singlet state on Cu and Ag surfaces containing presorbed chlorine. Adsorption of chlorine on Cu and Ag surfaces containing presorbed atomic oxygen causes a disappearance of the oxygen. Extended Hückel calculations predict the observed behaviour.
Resumo:
Methanol adsorbs molecularly on the surfaces of Cu–Pd alloys at low temperatures and transforms to CH3O or CO on warming, depending upon the alloy composition. On oxygen presorbed Cu–Pd alloy surfaces, adsorption of methanol gives rise to H2O and H2CO. CH3OH adsorbed molecularly on the surfaces of Cu–Au alloys and CH3O is formed only at relatively high temperatures.
Resumo:
Electron spectroscopic studies clearly demonstrate that modification of the surfaces of Mn, Fe and Ni metals by chlorine significantly decreases the strength of interaction between the metal and adsorbed molecules such as CO and N2. This is in contrast to the effect of electropositive additives such as Ba and Al which increase the adsorption bond strength significantly.
Resumo:
Ultraviolet and x-ray photoelectron spectroscopy have been employed to investigate the adsorption of methanol, ethanol, diethylether, acetaldehyde, acetone, methyl acetate and methylamine on surfaces of Fe, Ni and Cu. All these molecules adsorb molecularly at low temperatures (≤100 K). Lone pair orbitals of these molecules are stabilized on these metal surfaces (by 0·4–1·0eV) due to molecular chemisorption. The molecules generally undergo transformations as the temperature is raised to 120 K or above. The new species produced seems to depend on the metal surface. Some of the product species identified are methoxy species, formaldehyde and carbon monoxide in the case of methanol and methyl acetate, ethoxy species in the case of ethanol and 2-propanol in the case of acetone.
Resumo:
Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.
Resumo:
Abstract is not available.
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
Chitosan grafted poly(alkyl methacrylate)s (namely chitosan grafted poly(methyl methacrylate) (ChgPMMA), chitosan grafted poly(ethyl methacrylate)(ChgPEMA), chitosan grafted poly(butyl methacrylate) (ChgPBMA) and chitosan grafted poly(hexyl methacrylate) (ChgPHMA)) were synthesized and characterized by using FT-IR and C-13 NMR techniques. The adsorption batch experiments on these grafted copolymers were conducted by using an anionic sulfonated dye. Orange-G. A pseudo-second-order kinetic model was used to determine the kinetics of adsorption. The effect of grafting, effect of process variables and the effect of different sulfonated anionic dyes (Orange-C, Congo Red, Remazol Brill Blue R and Methyl Blue) on the adsorption kinetics was determined. The Langmuir and Freundlich models were used to fit the adsorption isotherms and from the values of correlation coefficients (R-2), it was observed that the experimental data fits very well to the Langmuir model. The values of the maximum adsorption capacity of the adsorbents follow the order: ChgPMMA > ChgPEMA > ChgPBMA > ChgPHMA > chitosan. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A central composite rotatable experimental design was constructed for a statistical study of the ethylation of benzene in the liquid phase, with aluminum chloride catalyst, in an agitated tank system. The conversion of benzene and ethylene and the yield of monoethyl- and diethylbenzene are characterized by the response surface technique. In the experimental range studied, agitation rate has no significant effect. Catalyst concentration, rate of ethylene Flow, and temperature are the influential factors. The response surfaces may be adequately approximated by planes.
Resumo:
Molecular dynamics investigation of benzene in one-dimensional channel systems A1PO(4)-5, VPI-5, and carbon nanotube is reported. The results suggest that, in all the three host systems, the plane of benzene is almost perpendicular to the channel axis when the molecule is near the center of the channel and the plane of benzene is parallel to the channel axis when the molecule is near the wall of the channel. The density distribution of benzene as a function of channel length, z and the radial distance, r, from the channel axis is also different in the three host structures. Anisotropy in translational diffusion coefficient, calculated in body-fixed frame of benzene, suggests that benzene prefers to move with its plane parallel to the direction of motion in A1PO(4)-5 and VPI-5 whereas in carbon nanotube the motion occurs predominantly with the plane of the benzene perpendicular to the direction of motion.;Anisotropy associated with the rotational motion is seen to alter significantly in confinement as compared to liquid benzene. In A1PO(4)-5, the rotational anisotropy is reversed as compared to liquid benzene thereby suggesting that anisotropy arising out of molecular geometry can be reduced. Reorientational correlation times for C-6 and C-2 axes Of benzene are reported. Apart from the inertial decay of reorientational correlation function due to free, rotation, two other distinct regimes of decay are observed in narrower channels (AIPO(4)-5 and carbon nanotube): (i) an initial fast decay (0.5-2 ps) and (ii) a slower decay (>2 ps) of reorientational correlation function where C-6 decays slower than C-2 Similar to what is observed in liquid benzene. In the initial fast decay, it is seen that the decay for C-6 is faster than C-2 which is in contrast to what is observed in liquid benzene or for benzene confined in VPI-5.
Resumo:
X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.
Resumo:
Nitrogen is dissociatively adsorbed on an annealed Ni/TiO2 surface just as on a Ti–Ni alloy surface while it is molecularly adsorbed on a Ni/Al2O3 surface.
Resumo:
Oxygen is shown to adsorb molecularly on a clean Cu(110) surface at 80 K and dissociate around 150 K forming atomic oxygen. Adsorption of oxygen on an HCl covered surface at low temperatures results in the formation of adsorbed hydroxyl groups and water in addition to adsorbed molecular oxygen. The molecular oxygen species is stable up to 190 K on the HCl covered surface.