53 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer
Resumo:
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an ``adaptive threshold,'' i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Resumo:
In this paper, we consider low-complexity turbo equalization for multiple-input multiple-output (MIMO) cyclic prefixed single carrier (CPSC) systems in MIMO inter-symbol interference (ISI) channels characterized by large delay spreads. A low-complexity graph based equalization is carried out in the frequency domain. Because of the reduction in correlation among the noise samples that happens for large frame sizes and delay spreads in frequency domain processing, improved performance compared to time domain processing is shown to be achieved. This improved performance is attractive for equalization in severely delay spread ISI channels like ultrawideband channels and underwater acoustic channels.
Resumo:
Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
Biological systems present remarkable adaptation, reliability, and robustness in various environments, even under hostility. Most of them are controlled by the individuals in a distributed and self-organized way. These biological mechanisms provide useful resources for designing the dynamical and adaptive routing schemes of wireless mobile sensor networks, in which the individual nodes should ideally operate without central control. This paper investigates crucial biologically inspired mechanisms and the associated techniques for resolving routing in wireless sensor networks, including Ant-based and genetic approaches. Furthermore, the principal contributions of this paper are as follows. We present a mathematical theory of the biological computations in the context of sensor networks; we further present a generalized routing framework in sensor networks by diffusing different modes of biological computations using Ant-based and genetic approaches; finally, an overview of several emerging research directions are addressed within the new biologically computational framework.
Resumo:
In the present paper, the ultrasonic strain sensing performance of large-area piezoceramic coating with Inter Digital Transducer (IDT) electrodes is studied. The piezoceramic coating is prepared using slurry coating technique and the piezoelectric phase is achieved by poling under DC field. To study the sensing performance of the piezoceramic coating with IDT electrodes for strain induced by the guided waves, the piezoceramic coating is fabricated on the surface of a beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end. Often a wider frequency band of operation is needed for the effective implementation of the sensors in the Structural Health Monitoring (SHM) of various structures, for different types of damages. A wider frequency band of operation is achieved in the present study by considering the variation in the number of IDT electrodes in the contribution of voltage for the induced dynamic strain. In the present work, the fabricated piezoceramic coatings with IDT electrodes have been characterized for dynamic strain sensing applications using guided wave technique at various different frequencies. Strain levels of the launched guided wave are varied by varying the magnitude of the input voltage sent to the actuator. Sensitivity variation with the variation in the strain levels of guided wave is studied for the combination of different number of IDT electrodes. Piezoelectric coefficient e(11) is determined at different frequencies and at different strain levels using the guided wave technique.
Resumo:
Ultrasonic strain sensing performance of the large area PVDF with Inter Digital Electrodes (IDE) is studied in this work. Procedure to obtain IDE on a beta-phase PVDF is explained. PVDF film with IDE is bonded on a plate structure and is characterized for its directional sensitivity at different frequencies. Guided waves are induced on the IDE-PVDF sensor from different directions by placing a piezoelectric wafer actuator at different angles. Strain induced on the IDE-PVDF sensor by the guided waves in estimated by using a Laser Doppler Vibrometer (LDV) and a wave propagation model. Using measured voltage response from IDE-PVDF sensor and the strain measurements from LDV the piezoelectric coefficient is estimated in various directions. The variation of 11 e at different angles shows directional sensitivity of the IDE-PVDF sensor to the incident guided waves. The present study provides an effective technique to characterize thin film piezoelectric sensors for ultrasonic strain sensing at very high frequencies of 200 kHz. Often frequency of the guided wave is changed to alter the wavelength to interrogate damages of different sizes in Structural Health Monitoring (SHM) applications. The unique property of directional sensitivity combined with frequency tunability makes the IDE-PVDF sensor most suitable for SHM of structures.
Resumo:
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Resumo:
A temperature compensation method is proposed for CNT-composite strain sensors. CNT-composite sensors are fabricated on an elastic polymer substrate having known thermo-mechanical properties to introduce thermo-mechanical strain and further calibration of the sensor. Strain is induced on the sensor by bending the substrate as a cantilever configuration. Response of the sensor is measured using a bridge circuit method. Induced strain in the beam is determined using beam theory. The sensors are characterized for different CNT concentrations and at various temperatures. A model based temperature compensation scheme is proposed and verified experimentally. The result proves the ability of CNT-nanocomposite strain sensors to be used under varying temperature applications. A method is proposed to determine the strain and temperature simultaneously. The CNT sensors are simple to fabricate in complex patterns with excellent repeatability and do not require bonding layer.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
An approximate dynamic programming (ADP) based neurocontroller is developed for a heat transfer application. Heat transfer problem for a fin in a car's electronic module is modeled as a nonlinear distributed parameter (infinite-dimensional) system by taking into account heat loss and generation due to conduction, convection and radiation. A low-order, finite-dimensional lumped parameter model for this problem is obtained by using Galerkin projection and basis functions designed through the 'Proper Orthogonal Decomposition' technique (POD) and the 'snap-shot' solutions. A suboptimal neurocontroller is obtained with a single-network-adaptive-critic (SNAC). Further contribution of this paper is to develop an online robust controller to account for unmodeled dynamics and parametric uncertainties. A weight update rule is presented that guarantees boundedness of the weights and eliminates the need for persistence of excitation (PE) condition to be satisfied. Since, the ADP and neural network based controllers are of fairly general structure, they appear to have the potential to be controller synthesis tools for nonlinear distributed parameter systems especially where it is difficult to obtain an accurate model.
Resumo:
An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
This paper presents an Artificial Neural Network (ANN) approach for locating faults in distribution systems. Different from the traditional Fault Section Estimation methods, the proposed approach uses only limited measurements. Faults are located according to the impedances of their path using a Feed Forward Neural Networks (FFNN). Various practical situations in distribution systems, such as protective devices placed only at the substation, limited measurements available, various types of faults viz., three-phase, line (a, b, c) to ground, line to line (a-b, b-c, c-a) and line to line to ground (a-b-g, b-c-g, c-a-g) faults and a wide range of varying short circuit levels at substation, are considered for studies. A typical IEEE 34 bus practical distribution system with unbalanced loads and with three- and single- phase laterals and a 69 node test feeder with different configurations are considered for studies. The results presented show that the proposed approach of fault location gives close to accurate results in terms of the estimated fault location.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.