53 resultados para Absolute configuration
Resumo:
The absolute configuration of echitamine iodide has been determined by the Bijvoet technique, making use of the intensity differences between hkl and {Mathematical expression} reflections due to the anomalous scattering of CuKa radiation by the iodine atom. The various steps in the procedure are discussed in detail in this paper.
Resumo:
The first total synthesis of the sesquiterpene (-)-cucumin H, a linear triquinane isolated from Macrocystidia cucumis, has been accomplished starting from (R)-limonene employing two different cyclopentannulation methodologies, which in addition to confirming the structure also established the absolute configuration of the natural product.
Resumo:
Enantiospecific total synthesis and determination of the absolute stereochemistry of the alpha-pyrone-containing natural product synargentolide B were accomplished. The absolute stereochemistry of the natural product was established by synthesizing the possible diastereomers and comparison of the data with those reported for the natural product. During the process, total synthesis of the putative structure of related natural product 6R-1S,2R,SR,6S-(tetraacetyloxy)-3E-heptenyl]-5,6-dihydro-2H-pyran-2-o ne was also accomplished and confirmed by X-ray crystal structure analysis. Wittig-Horner reaction of a chiral phosphonate derived from (S)-lactic acid and ring-closing metathesis were the key reactions during the course of the total synthesis.
Resumo:
The study demonstrates the utility of ternary ion-pair complex formed among BINOL (1,1'-Bi-2-naphthol), a carboxylic acid and an organic base, such as, dimethylpyridine (DMAP), 1,4-diazabicyclo2.2.2]octane (DABCO), as a versatile chiral solvating agent (CSA) for the enantiodiscrimination of carboxylic acids, measurement of enantiomeric excess (ee) and the assignment of absolute configuration of hydroxy acids. The proposed mechanism of ternary complex has wider application for testing the enantiopurity owing to the fact that the binary mixture using BINOL alone does not serve as a solvating agent for their discrimination. In addition, the developed protocol has an excellent utility for the assignment of the absolute configurations of hydroxy acids.
Resumo:
The enantiospecific total synthesis of two epimers of the sesquiterpene isocalamusenone has been accomplished starting from the readily available monoterpene (R)-limonene which of the natural product established the stereostructure and the absolute configuration (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Enantiospecific total synthesis of two epimeric sesquiterpenes 11-hydroxyguaiadienes has been accomplished starting from the readily available monoterpene (R)-limonene, which confirmed the structure and absolute configuration of the natural products. (C) 2010 Elsevier Ltd. All rights reserved.
Crystal and Molecular Structure of Sclerophytin F Methyl Ether from the Soft Coral Cladiella krempfi
Resumo:
new cembranoid diterpene was isolated from the soft coral Ckdiella h p f ifrom Minicoy Island (India), and its structure was established by X-ray crystallography to be sclerophytin F methyl ether (21 with the R absolute configuration at all six epimeric centers,assuming a configuration similar to that of sclerophytin C. Compound 2 may be an artifact of the isolation process.
Resumo:
We propose a conformational nomenclature for amphiphilic lipid molecules that is general and compatible with the stereospecific numbering scheme, in contrast to earlier methods in which discrepancies with the sn-scheme lead to contradictory assignments of the absolute configuration of the system. The present method can be rationally extended to different classes of lipids, both natural and synthetic. It is simple and provides a convenient framework for conformational studies on widely varying classes of lipids.
Resumo:
A 5, 10-dioxygenated-tricyclo[5.2.1.0(2,6)]decane derivative 6 has yielded to efficient enzymatic resolution to provide a range of chiral building blocks, whose absolute configuration has been determined through a total synthesis of naturally occuring (+)-coronafacic acid. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Stereoselective total synthesis and assignment of the absolute configuration of the keto carba sugar gabosine H is presented. Pivotal reactions in the sequence include desymmetrization of the dimethylamide of tartaric acid and ring-closing metathesis.
Resumo:
The diphosphazane ligands of the type, (C20H12O2)PN(R)P(E)Y2 (R = CHMe2 or (S)-*CHMePh; E = lone pair or S; Y2 = O2C20H12 or Y = OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) bearing axially chiral 1,1'-binaphthyl-2,2′-dioxy moiety have been synthesised. The structure and absolute configuration of a diastereomeric palladium complex, [PdCl2{ηsu2}-((O2C20H12)PN((S)-*CHMePh)PPh2] has been determined by X-ray crystallography. The reactions of [CpRu(PPh3)2Cl] with various symmetrical and unsymmetrical diphosphazanes of the type, X2PN(R)PYY′ (R = CHMe2 or (S)-*CHMePh; X = C6H5 or X2 = O2C20H12; Y=Y′= C6H5 or Y = C6H5, Y′ = OC6H4Me-4 or OC6H3Me2-3,5 or N2C3HMe2-3,5) yield several diastereomeric neutral or cationic half-sandwich ruthenium complexes which contain a stereogenic metal center. In one case, the absolute configuration of a trichiral ruthenium complex, viz. [Cp*Ruη2-Ph2PN((S)-*CHMePh)*PPh (N2C3HMe2-3,5)Cl] is established by X-ray diffraction. The reactions of Ru3(CO)12 with the diphosphazanes (C20H12O2)PN(R)PY2 (R = CHMe2orMe; Y2=O2C20H12or Y= OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) yield the triruthenium clusters [Ru3(CO)10{η-(O2C20H12)PN(R)PY2}], in which the diphosphazane ligand bridges two metal centres. Palladium allyl chemistry of some of these chiral ligands has been investigated. The structures of isomeric η3-allyl palladium complexes, [Pd(η3-l,3-R′2-C3H3){η2-(rac)-(02C20H12)PN(CHMe2)PY2}](PF6) (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopic and X-ray crystallographic studies.
Resumo:
Reaction of [CpRu(PPh3)(2)Cl] (1) {Cp = eta(5)-(C5H5)} with X2PN(CHMe2) PYY' {X = Y = Y' = Ph (L-1); X = Y = Ph, Y' = OC6H4Me-4 (L-4); X = Y = Ph, Y' = OC6H3Me2- 3,5 (L-5); X = Y = Ph, Y' = N2C3HMe2 (L-6)} yields the cationic chelate complexes, [CpRu(eta(2)-(X2PN(CHMe2) PYY')) PPh3] Cl. On the other hand, the reaction of 1 with X2PN(CHMe2)PYY' {X = Ph, YY' = O2C6H4(L-3)} gives the complex, [CpRu(eta(1)-L-2)(2)PPh3] Cl. Both types of complexes are formed with X2PN(CHMe2) PYY' {X = Ph, YY' = O2C6H4 (L-3)}. The reaction of 1 with (R),(S)-(H12C20O2) PN(CHMe2) PPh2 (L-7) yields both cationic and neutral complexes, [CpRu{eta(2)-(L-7)} PPh3] Cl and [CpRu{eta(1)-(L-7)}(2)PPh3] Cl and [CpRu{eta(2)-(L-7)}Cl]. The reactions of optically pure diphosphazane, Ph2PN(*CHMePh) PPhY (Y = Ph (L-8); Y = N2C3HMe2-3,5 (L-9)) with 1 give the neutral and cationic ruthenium complexes, [CpRu{eta(2)-(Ph2PN(R) PPhY)} Cl] and [CpRu{eta(2)-(Ph2PN(R)PPhY)} PPh3] Cl. "Chiral-at-metal" ruthenium complexes of diphosphazanes have been synthesized with high diastereoselectivity. The absolute configuration of a novel ruthenium complex, (SCSPRRu)-[(eta(5)-C5H5) Ru*{eta(2)-(Ph2PN(*CHMePh)P*Ph( N2C3HMe2-3,5))} Cl] possessing three chiral centers, is established by X-ray crystallography. The reactions of [CpRu{eta(2)-(L-8)} Cl] with mono or diphosphanes in the presence of NH4PF6 yield the cationic complexes, [CpRu{eta(2)-(L-8)}{eta(1)-(P)}] PF6 {P = P(OMe)(3), PPh3, Ph2P(CH2)(n)PPh2 (n = 1 or 2)}.
Resumo:
The enantiospecific first total synthesis of the enantiomer of the irregular sesquiterpene from Ligusticumgrayi allothapsenol, starting from the readily available monoterpene (R)-carvone, is described, which confirmed the assumed absolute configuration of the natural product.
Resumo:
Optically active Lewis acids and Lewis pairs were synthesized and characterized by multinuclear NMR, UV/Vis spectroscopy and elemental analysis. Optical rotation measurements were carried out and the absolute configuration of the new chiral molecules confirmed by single crystal X-ray diffraction.