133 resultados para ARRAY ELECTRODES
Resumo:
In space application the precision level measurement of cryogenic liquids in the storage tanks is done using triple redundant capacitance level sensor, for control and safety point of view. The linearity of each sensor element depends upon the cylindricity and concentricity of the internal and external electrodes. The complexity of calibrating all sensors together has been addressed by two step calibration methodology which has been developed and used for the calibration of six capacitance sensors. All calibrations are done using Liquid Nitrogen (LN2) as a cryogenic fluid. In the first step of calibration, one of the elements of Liquid Hydrogen (LH2) level sensor is calibrated using 700mm eleven point discrete diode array. Four wire method has been used for the diode array. Thus a linearity curve for a single element of LH2 is obtained. In second step of calibration, using the equation thus obtained for the above sensor, it is considered as a reference for calibrating remaining elements of the same LH2 sensor and other level sensor (either Liquid Oxygen (LOX) or LH2). The elimination of stray capacitance for the capacitance level probes has been attempted. The automatic data logging of capacitance values through GPIB is done using LabVIEW 8.5.
Resumo:
Surface electrode switching of 16-electrode wireless EIT is studied using a Radio Frequency (RF) based digital data transmission technique operating with 8 channel encoder/decoder ICs. An electrode switching module is developed the analog multiplexers and switched with 8-bit parallel digital data transferred by transmitter/receiver module developed with radio frequency technology. 8-bit parallel digital data collected from the receiver module are converted to 16-bit digital data by using binary adder circuits and then used for switching the electrodes in opposite current injection protocol. 8-bit parallel digital data are generated using NI USB 6251 DAQ card in LabVIEW software and sent to the transmission module which transmits the digital data bits to the receiver end. Receiver module supplies the parallel digital bits to the binary adder circuits and adder circuit outputs are fed to the multiplexers of the electrode switching module for surface electrode switching. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using opposite current injection protocol. The boundary potentials developed at the voltage electrodes are measured and studied to assess the wireless data transmission.
Resumo:
Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Surface electrodes in Electrical Impedance Tomography (EIT) phantoms usually reduce the SNR of the boundary potential data due to their design and development errors. A novel gold sensors array with high geometric precision is developed for EIT phantoms to improve the resistivity image quality. Gold thin films are deposited on a flexible FR4 sheet using electro-deposition process to make a sixteen electrode array with electrodes of identical geometry. A real tissue gold electrode phantom is developed with chicken tissue paste and the fat cylinders as the inhomogeneity. Boundary data are collected using a USB based high speed data acquisition system in a LabVIEW platform for different inhomogeneity positions. Resistivity images are reconstructed using EIDORS and compared with identical stainless steel electrode systems. Image contrast parameters are calculated from the resistivity matrix and the reconstructed images are evaluated for both the phantoms. Image contrast and image resolution of resistivity images are improved with gold electrode array.
Resumo:
Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nanobiomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.
Resumo:
Partial discharges in a gaseous interface due to the presence of a dielectric between two uniform field electrodes in air at different pressures from 0.5 to 685 mm Hg have been studied and measurements of inception and extinction voltages, number of pulses and their charge magnitudes at inception are reported. It has been observed that the extinction voltage can be as low as 70% of the inception voltage suggesting that the working voltage in such cases should be about 30% lower than the observed inception voltage. Small magnitude pulses are found to be more in number than large magnitude pulses. The charge is found to be pressure dependent. The results have been explained on the basis of an equivalent circuit consisting of resistance and capacitance in which the discharge gap functions as a switch.
Resumo:
A new technique has been devised to achieve a steady-state polarisation of a stationary electrode with a helical shaft rotating coaxial to it. A simplified theory for the convective hydrodynamics prevalent under these conditions has been formulated. Experimental data are presented to verify the steady-state character of the current-potential curves and the predicted dependence of the limiting current on the rotation speed of the rotor, the bulk concentration of the depolariser and the viscosity of the solution. Promising features of the multiple-segment electrodes concentric to a central disc electrode are pointed out.
Resumo:
Electrochemical data are reported for oxygen reduction on platinized coconut-shell charcoal electrodes in 2.5M H*SO,, and 7M HsF’04. In both these media the electrodes exhibit good activity and can sustain currents up to 600 mA cm-* at a polarization of about 400 mV from their rest potentials. The overall performance is comparable with the best type of carbonsupported platinum electrodes reported in the literature.
Resumo:
This paper presents two approximate analytical expressions for nonlinear electric fields in the principal direction in axially symmetric (3D) and two dimensional (2D) ion trap mass analysers with apertures (holes in case of 3D traps and slits in case of 2D traps) on the electrodes. Considered together (3D and 2D), we present composite approximations for the principal unidirectional nonlinear electric fields in these ion traps. The composite electric field E has the form E = E-noaperture + E-aperture. where E-noaperture is the field within an imagined trap which is identical to the practical trap except that the apertures are missing and E-aperture is the field contribution due to apertures on the two trap electrodes. The field along the principal axis, of the trap can in this way be well approximated for any aperture that is not too large. To derive E-aperture. classical results of electrostatics have been extended to electrodes with finite thickness and different aperture shapes.E-noaperture is a modified truncated multipole expansion for the imagined trap with no aperture. The first several terms in the multipole expansion are in principle exact(though numerically determined using the BEM), while the last term is chosen to match the field at the electrode. This expansion, once Computed, works with any aperture in the practical trap. The composite field approximation for axially symmetric (3D) traps is checked for three geometries: the Paul trap, the cylindrical ion trap (CIT) and an arbitrary other trap. The approximation for 2D traps is verified using two geometries: the linear ion trap (LIT) and the rectilinear ion trap (RIT). In each case, for two aperture sizes (10% and 50% of the trap dimension), highly satisfactory fits are obtained. These composite approximations may be used in more detailed nonlinear ion dynamics Studies than have been hitherto attempted. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Experimental results for breakdown voltage of sodium vapour measured for the first time using coaxial cylindrical electrodes of fixed gap distance (5 mm) and pressure (corrected to2 0 "C) in the range2 1 to 652 Pa are reported, and are founfdo l ltoow Paschen's Law. The investigations also reveal that V th-Ie characteristics are pressure dependent; the current during the breakdown and the buoifl dc-uurpre nt after a breakdoiws nei ther positive or negative. in spite of the central cylinder being always maintained at a positive potential
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
The kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on titanium-substrate lead dioxide electrodes have been investigated experimentally and theoretically. It has been demonstrated that the ionic strength of the solution has a marked effect on the rate of perchlorate formation, whereas the pH of the solution does not influence the reaction rate. Experimental data have also been obtained on the dependence of the reaction rate on the concentration of chlorate ion in the solution at constant ionic strength. With these data, diagnostic kinetic criteria have been deduced and compared with corresponding quantities predicted for various possible mechanisms including double layer effects on electrode kinetics. It has thus been shown that the most probable mechanisms for anodic chlorate oxidation on lead dioxide anodes involve the discharge of a water molecule in a one-electron transfer step to give an adsorbed hydroxyl radical as the rate-determining step for the overall reaction.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.