80 resultados para A disintegrin and metalloprotease domain (ADAM)
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
Background: Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. Results: Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. Conclusions: Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
Resumo:
Frequency-domain scheduling and rate adaptation enable next-generation orthogonal frequency-division multiple access (OFDMA) cellular systems such as Long-Term Evolution (LTE) to achieve significantly higher spectral efficiencies. LTE uses a pragmatic combination of several techniques to reduce the channel-state feedback that is required by a frequency-domain scheduler. In the subband-level feedback and user-selected subband feedback schemes specified in LTE, the user reduces feedback by reporting only the channel quality that is averaged over groups of resource blocks called subbands. This approach leads to an occasional incorrect determination of rate by the scheduler for some resource blocks. In this paper, we develop closed-form expressions for the throughput achieved by the feedback schemes of LTE. The analysis quantifies the joint effects of three critical components on the overall system throughput-scheduler, multiple-antenna mode, and the feedback scheme-and brings out its dependence on system parameters such as the number of resource blocks per subband and the rate adaptation thresholds. The effect of the coarse subband-level frequency granularity of feedback is captured. The analysis provides an independent theoretical reference and a quick system parameter optimization tool to an LTE system designer and theoretically helps in understanding the behavior of OFDMA feedback reduction techniques when operated under practical system constraints.
Resumo:
The propagation of axial waves in hyperelastic rods is studied using both time and frequency domain finite element models. The nonlinearity is introduced using the Murnaghan strain energy function and the equations governing the dynamics of the rod are derived assuming linear kinematics. In the time domain, the standard Galerkin finite element method, spectral element method, and Taylor-Galerkin finite element method are considered. A frequency domain formulation based on the Fourier spectral method is also developed. It is found that the time domain spectral element method provides the most efficient numerical tool for the problem considered.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.
Resumo:
Ser/Thr and Tyr protein kinases orchestrate many signalling pathways and hence loss in this balance leads to many disease phenotypes. Due to their high abundance, diversity and importance, efforts have been made in the past to classify kinases and annotate their functions at both gross and fine levels. These kinases are conventionally classified into subfamilies based on the sequences of catalytic domains. Usually the domain architecture of a full-length kinase is consistent with the subfamily classification made based on the sequence of kinase domain. Important contributions of modular domains to the overall function of the kinase are well known. Recently occurrence of two kinds of outlier kinases-''Hybrid'' and ``Rogue'' has been reported. These show considerable deviations in their domain architectures from the typical domain architecture known for the classical kinase subfamilies. This article provides an overview of the different subfamilies of human kinases and the role of non-kinase domains in functions and diseases. Importantly this article provides analysis of hybrid and rogue kinases encoded in the human genome and highlights their conservation in closely related primate species. These kinases are examples of elegant rewiring to bring about subtle functional differences compared to canonical variants.
Resumo:
The interactions of lipid A and lipopolysaccharide (LPS) with human serum albumin (HSA) were examined using fluorescence methods. Lipid A binds HSA with a stoichiometry of 2:1 with dissociation constants of 1.0 µM and 6.0 µM for the high- and low-affinity interactions, respectively. Lipid A displaces HSA-bound dansylsarcosine competitively, but not HSA-bound warfarin, suggesting that domain III-A, and not domain 11-A, is a lipid A binding site. Domain I does not contribute a site for lipid A. Based on these data, and the structural similarity between subdomains III-A and III-B, it is proposed that these two regions of HSA represent the high- and low-affinity sites of interaction of lipid A. Whole LPS also binds HSA, displacing dansylsarcosine, and its lipid A moiety appears to be the interaction site. However, there are differences between LPS and free lipid A. Polymyxin B forms ternary complexes with LPS bound to HSA, suggesting that the regions on LPS recognized by HSA and polymyxin B are different. The observed affinity of lipid A for HSA and mass action effects due to its abundance in the circulation would imply a major LPS carrier function for HSA.
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
The effect of KCI addition on the microstructural, structural and dielectric properties of bismuth vanadate, Bi2VO5.5 (BiV) has been examined. The average grain size of BN ceramics increases with increase in KCl content (from an average grain size of TO to 80 mu m) as a result of the increased liquid-phase formation of KCI, at the grain boundaries. Differential scanning calorimetry (DSC) carried out on the KCl-added samples indicates an upward shift in the transition temperature (T-c), from 723 K (for BN) to 734 K (for 5 mol% KCl-added BiV). On further increase in the KCI content, T-c shifts down to about 722 K for 10 mol%. This trend is consistent with that of the lattice strain data. The relative permittivity as well as the dielectric loss decrease by more than half of the original values upon the addition of KCI. The relative permittivities of the KCl-added ceramics are comparable with the values predicted by the logarithmic mixture rule. Impedance analyses suggest that the grain boundary resistance of the KCl-added BiV ceramics is higher by two orders of magnitude than that of BN ceramics. The KCl-added BN ceramics exhibit ferroelectric domains and the domain density decreases as the grain boundary region is approached.
Resumo:
Depression is associated with increased cardiovascular mortality in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate variability (HRV) or heart period variability has been linked to sudden death in patients with cardiac disease as well as in normal controls. Recent studies have shown decreased vagal function in cardiac patients with depression as well as in depressed patients without cardiac illness. In this study, we compared 20 h awake and sleep heart period nonlinear measures using quantification of nonlinearity and chaos in two groups of patients with major depression and ischemic heart disease (mean age 59-60 years) before and after 6 weeks of treatment with paroxetine or nortriptyline. Patients received paroxetine, 20-30 mg/day or nortriptyline targeted to 190-570 nmol/l for 6 weeks. For HRV analysis, 24 patients were included in the paroxetine treatment study and 20 patients in the nortriptyline study who had at least 20,000 s of awake data. The ages of these groups were 60.4 +/- 10.5 years for paroxetine and 60.8 +/- 13.4 years for nortriptyline. There was a significant decrease in the largest Lyapunov exponent (LLE) after treatment with nortriptyline but not paroxetine. There were also significant decreases in nonlinearity scores on S-netPR and S-netGS after nortriptyline, which may be due to a decrease in cardiac vagal modulation of HRV. S-netGS and awake LLE were the most significant variables that contributed to the discrimination of postparoxetine and postnortriptyline groups even with the inclusion of time and frequency domain measures. These findings suggest that nortriptyline decreases the measures of chaos probably through its stronger vagolytic effects on cardiac autonomic function compared with paroxetine, which is in agreement with previous clinical and preclinical reports. Nortriptyline was also associated with a significant decrease in nonlinearity scores, which may be due to anticholinergic and/or sympatholytic effects. As depression is associated with a strong risk factor for cardiovascular mortality, one should be careful about using any drug that adversely affects cardiac vagal function. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
Background: Bacteria such as Escherichia coli and Salmonella typhimurium can utilize acetate as the sole source of carbon and energy. Acetate kinase (AckA) and phosphotransacetylase (Pta), key enzymes of acetate utilization pathway, regulate flux of metabolites in glycolysis, gluconeogenesis, TCA cycle, glyoxylate bypass and fatty acid metabolism. Results: Here we report kinetic characterization of S. typhimurium AckA (StAckA) and structures of its unliganded (Form-I, 2.70 angstrom resolution) and citrate-bound (Form-II, 1.90 angstrom resolution) forms. The enzyme showed broad substrate specificity with k(cat)/K-m in the order of acetate > propionate > formate. Further, the K-m for acetyl-phosphate was significantly lower than for acetate and the enzyme could catalyze the reverse reaction (i.e. ATP synthesis) more efficiently. ATP and Mg2+ could be substituted by other nucleoside 5'-triphosphates (GTP, UTP and CTP) and divalent cations (Mn2+ and Co2+), respectively. Form-I StAckA represents the first structural report of an unliganded AckA. StAckA protomer consists of two domains with characteristic beta beta beta alpha beta alpha beta alpha topology of ASKHA superfamily of proteins. These domains adopt an intermediate conformation compared to that of open and closed forms of ligand-bound Methanosarcina thermophila AckA (MtAckA). Spectroscopic and structural analyses of StAckA further suggested occurrence of inter-domain motion upon ligand-binding. Unexpectedly, Form-II StAckA structure showed a drastic change in the conformation of residues 230-300 compared to that of Form-I. Further investigation revealed electron density corresponding to a citrate molecule in a pocket located at the dimeric interface of Form-II StAckA. Interestingly, a similar dimeric interface pocket lined with largely conserved residues could be identified in Form-I StAckA as well as in other enzymes homologous to AckA suggesting that ligand binding at this pocket may influence the function of these enzymes. Conclusions: The biochemical and structural characterization of StAckA reported here provides insights into the biochemical specificity, overall fold, thermal stability, molecular basis of ligand binding and inter-domain motion in AckA family of enzymes. Dramatic conformational differences observed between unliganded and citrate-bound forms of StAckA led to identification of a putative ligand-binding pocket at the dimeric interface of StAckA with implications for enzymatic function.
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
Internal mobility of the two domain molecule of ribosome recycling factor (RRF) is known to be important for its action. Mycobacterium tuberculosis RRF does not complement E. coli for its deficiency of RRF (in the presence of E. coli EF-G alone). Crystal structure had revealed higher rigidity of the M. tuberculosis RRF due to the presence of additional salt bridges between domains. Two inter-domain salt bridges and one between the linker region and the domain containing C-terminal residues were disrupted by appropriate mutations. Except for a C-terminal deletion mutant, all mutants showed RRF activity in E. coli when M. tuberculosis EF-G was also co-expressed. The crystal structures of the point mutants, that of the C-terminal deletion mutant and that of the protein grown in the presence of a detergent, were determined. The increased mobility resulting from the disruption of the salt bridge involving the hinge region allows the appropriate mutant to weakly complement E. coli for its deficiency of RRF even in the absence of simultaneous expression of the mycobacterial EF-G. The loss of activity of the C-terminal deletion mutant appears to be partly due to the rigidification of the molecule consequent to changes in the hinge region.
Resumo:
We address the problem of reconstructing a sparse signal from its DFT magnitude. We refer to this problem as the sparse phase retrieval (SPR) problem, which finds applications in tomography, digital holography, electron microscopy, etc. We develop a Fienup-type iterative algorithm, referred to as the Max-K algorithm, to enforce sparsity and successively refine the estimate of phase. We show that the Max-K algorithm possesses Cauchy convergence properties under certain conditions, that is, the MSE of reconstruction does not increase with iterations. We also formulate the problem of SPR as a feasibility problem, where the goal is to find a signal that is sparse in a known basis and whose Fourier transform magnitude is consistent with the measurement. Subsequently, we interpret the Max-K algorithm as alternating projections onto the object-domain and measurement-domain constraint sets and generalize it to a parameterized relaxation, known as the relaxed averaged alternating reflections (RAAR) algorithm. On the application front, we work with measurements acquired using a frequency-domain optical-coherence tomography (FDOCT) experimental setup. Experimental results on measured data show that the proposed algorithms exhibit good reconstruction performance compared with the direct inversion technique, homomorphic technique, and the classical Fienup algorithm without sparsity constraint; specifically, the autocorrelation artifacts and background noise are suppressed to a significant extent. We also demonstrate that the RAAR algorithm offers a broader framework for FDOCT reconstruction, of which the direct inversion technique and the proposed Max-K algorithm become special instances corresponding to specific values of the relaxation parameter.