41 resultados para 860-31.09
Resumo:
The dielectric constants of lead iron niobate (PFN) and 40% lead zinc niobate (PZN) added to lead iron niobate (PFN0.6-PZN(0.4)) have been measured as a function of pressure up to 6 GPa under isothermal conditions between room temperature and 348 K. The relaxer transition temperature measured at 1 kHz excitation frequency varies at a rate -24.5 K/GPa for PFN and at a rate of - 28.8 K/GPa for the PFN0.6-PZN(0.4) composition.
Resumo:
The reaction of [M2Cl2(mu-Cl)(2)(PR3)(2)] (M=Pd or Pt; PR3=PEt3, PBu3, PMe2Ph, PMePh2) with lithium amidinate or sodium triazenide gave binuclear complexes containing amidinato- or triazenido-bridges, [M2Cl2(mu-ArNENAr)(2)(PR3)(2)] (E=CH, CMe or N). These complexes were characterized by elemental analysis and NMR (H-1, P-31 or Pt-195) data. The structures of two complexes, [(PdCl2)-Cl-2(mu-PhNC(Me)NPh)(2)(PMe2Ph)(2)] (10) and [Pt2Cl2(mu-PhNNNPh)(2)(PEt3)(2)] (11) were established by single crystal X-ray structural analyses. The Pt-195 NMR data Show coupling between two metal centers in the cis triazenido-bridged complex. The corresponding amidinate bridged complex does not show coupling. The role of the bridging ligand in mediating interaction between the metal centers is probed through Extended Huckel Theory (EHT) calculations. It is suggested that M-M interactions are primarily affected by the bridging ligands
Resumo:
The sodium salt of poly(dG-dC) is known to exhibit a B + Z transition in the presence of various cations and 60% alcohol. We here show that the lithium salt of poly(dG-dC) does not undergo B 4 Z transition in the presence of 60% alcohol since Li’ with its large hydration shell cannot stabilize the Z-form. On the other hand, high concentrations of Mg2* or micromolar concentrations of the cobalt hexamine complex which are known to stabilize the Z-form can compete with Li+ for charge neutraIization and hence bring about a B--t Z transition in the same polymer. From the model building studies the mode of action of the cobalt-hexamine complex in stabilizing the Z-form is postulated.
Resumo:
e argue that the extraordinary fact that all three known millisecond pulsars are very close to the galactic plane implies that there must be ~100 potentially observable millisecond pulsars within ~4 kpc from the Sun. Our other main conclusion is that the dipole magnetic fields or old neutron stars probably saturate around 5 x 108 gauss.
Resumo:
The rates of NADH oxidation in presence of xanthine oxidase increase to a small and variable extent on addition of high concentrations of lactate dehydrogenase and other dehydrogenases. This heat stable activity is similar to polyvanadate-stimulation with respect to pH profile and SOD sensitivity. Isocitric dehydrogenase (NADP-specific) showed heat labile, SOD-sensitive polyvanadate-stimulated NADH oxidation activity. Polyvanadate-stimulated SOD-sensitive NADH oxidation was also found to occur with riboflavin, FMN and FAD in presence of a non-specific protein, BSA, suggesting that some flavoproteins may possess this activity.
Resumo:
The compositional dependence of thermal properties, such as glass transition temperature (T-g), non-reversing enthalpy change (Delta H-NR) and the specific heat capacity change (Delta C-p) of melt quenched Ge7Se93-xSbx (21 a parts per thousand currency sign x a parts per thousand currency sign 31) glasses, has been studied using alternating differential scanning calorimetry (ADSC) which is analogous to modulated differential scanning calorimetry (MDSC). The glass transition temperature, T-g, which is a measure of global connectivity of the glass, has been found to increase with the addition of Sb. In addition, a change in slope has been observed in the composition dependence of T-g at an average coordination aOE (c) r > = 2.40. The experimentally observed compositional variation of glass transition temperature, has been compared with the theoretical predictions from the stochastic agglomeration theory (SAT) and has been found to be consistent. Further, a narrow thermally reversing window is seen in the compositional variation of the relaxation enthalpy (Delta H-NR), which is centered around aOE (c) r > = 2.40. The change in specific heat capacity (Delta C-p) at T-g is also found to exhibit a distinct minima at aOE (c) r > = 2.40, suggesting that the structural rearrangements for the liquid in the glass transition region are minimized around aOE (c) r > = 2.4.
Resumo:
A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980-1981 to 2003-2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, N-x, N2O, SO2, PM and HC) using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg Of CO2, of which 94.5% was contributed by road transport (2003-2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) Of CO2, followed by Tamil Nadu 26.41 Tg(10.8%), Gujarat 23.31 Tg(9.6%), Uttar Pradesh 17.42 Tg(7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.
Resumo:
We have purified phage lambda beta protein produced by a recombinant plasmid carrying bet gene and confirm that it forms a complex with a protein of relative molecular mass 70 kDa. Therefore, beta protein, a component of general genetic recombination, is associated with two functionally diverse complexes; one containing exonuclease and the other 70 kDa protein. Using a number of independent methods, we show that 70 kDa protein is the ribosomal S1 protein of E. coli. Further, the association of 70 kDa protein with beta protein is biologically significant, as the former inhibits joining of the terminal ends of lambda chromosome and renaturation of complementary single stranded DNA promoted by the latter. More importantly, these findings initiate an understanding of an important mode of host- virus interaction in general with specific implication(s) in homologous genetic recombination.
Resumo:
INVESTIGATIONS of intestinal transport of amino-acids in the locust1,2 and silkworm3,4 have shown no evidence for active accumulation in a transport from the insect gut of amino-acids. When glycine-2-14C was administered in vivo to fifth instar larvae of the silkworm, 96 per cent of the radioactivity was incorporated into various tissues within 1 h whereas in vitro only 19 per cent of the activity was transported by the mid-gut of silkworm (unpublished work). These results suggested that continued absorption of glycine by the intestine could be aided by a facilitated diffusion mechanism in which amino-acids are rapidly removed from the site of absorption either by accumulation into other tissues or by degradation. Although the insect fat body has been assigned both accumulatory and dissimilatory roles5, the mechanism of accumulation of amino-acids has not been investigated. Our present experiments show that the silkworm fat body possesses an efficient mechanism for accumulating glycine and that both the accumulation and the release of glycine are metabolically controlled.
Resumo:
Silver iodide-based fast ion conducting glasses containing silver phosphate and silver borate have been studied. An attempt is made to identify the interaction between anions by studying the chemical shifts of31P and11B atoms in high resolution (HR) magic angle spinning (MAS) NMR spectra. Variation in the chemical shifts of31P or11B has been observed which is attributed to the change in the partial charge on the31P or11B. This is indicative of the change in the electronegativity of the anion matrix as a whole. This in turn is interpreted as due to significant interaction among anions. The significance of such interaction to the concept of structural unpinning of silver ions in fast ion conducting glasses is discussed.
Resumo:
The biphenyl ethers (BPEs) are the potent inhibitors of TTR fibril formation and are efficient fibril disrupter. However, the mechanism by which the fibril disruption occurs is yet to be fully elucidated. To gain insight into the mechanism, we synthesized and used a new QD labeled BPE to track the process of fibril disruption. Our studies showed that the new BPE-QDs bind to the fiber uniformly and has affinity and specificity for TTR fiber and disrupted the pre-formed fiber at a relatively slow rate. Based on these studies we put forth the probable mechanism of fiber disruption by BPEs. Also, we show here that the BPE-QDs interact with high affinity to the amyloids of A beta(42), lysozyme and insulin. The potential of BPE-QDs in the detection of senile plaque in the brain of transgenic Alzheimer's mice has also been explored. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A.C. electrical conductivity of potassium perchlorate (KP) has been measured in the temperature range 25�325°C at frequencies ranging from 50�500 Hz using an automated technique. The results are interpreted in terms of a novel mechanism involving Schottky defects in the anion sublattice and Frenkel defects in the cation sublattice. Theconductivity behavior of KP is compared with literature data on similar low-symmetry systems containing polyatomic ions.
Resumo:
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (ICFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K-D similar to 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access In recent years, IGFBPs have been implicated in a variety of cancers However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Eschericha coli Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E coli and first structural characterization of a full-length IGFBP (C) 2010 Elsevier Inc. All rights reserved
Resumo:
A biorthogonal series method is developed to solve Oseen type flow problems. The theory leads to a new set of eigenfunctions for a specific class of linear non-selfadjoint operators containing the biharmonic one. These eigenfunctions differ from those given earlier in the literature for the biharmonic operator. The method is applied to the problem of thermocapillary flow in a cylindrical liquid bridge of finite length with axial through flow. Flow and temperature distributions are obtained at leading order of an expansion for small surface tension Reynolds number and Prandtl number. Another related problem considered is that of cylindrical cavity flow. Solutions for both cases are presented in terms of biorthogonal series. The effect of axial through flow on velocity and temperature fields is discussed by numerical evaluation of the truncated analytical series. The presence of axial through flow not only convectively shifts the vortices induced by surface forces in the direction of the through flow, but also moves their centers toward the outer cylindrical boundary. This process can lead to significantly asymmetric flow structures.