56 resultados para 7140-309
Resumo:
Parameterization of sensible heat and momentum fluxes as inferred from an analysis of tower observations archived during MONTBLEX-90 at Jodhpur is proposed, both in terms of standard exchange coefficients C-H and C-D respectively and also according to free convection scaling. Both coefficients increase rapidly at low winds (the latter more strongly) and with increasing instability. All the sensible heat flux data at Jodhpur (wind speed at 10m <(U)over bar (10)>, < 8ms(-1)) also obey free convection scaling, with the flux proportional to the '4/3' power of an appropriate temperature difference such as that between 1 and 30 m. Furthermore, for <(U)over bar (10)> < 4 ms(-1) the momentum flux displays a linear dependence on wind speed.
Resumo:
We show that the cubicity of a connected threshold graph is equal to inverted right perpendicularlog(2) alpha inverted left perpendicular, where alpha is its independence number.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), b(i)] on the real line. The boxicity of any graph G, box(G) is the minimum positive integer b such that G can be represented as the intersection graph of axis-parallel b-dimensional boxes. A b-dimensional cube is a Cartesian product R-1 x R-2 x ... x R-b, where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), a(i) + 1] on the real line. When the boxes are restricted to be axis-parallel cubes in b-dimension, the minimum dimension b required to represent the graph is called the cubicity of the graph (denoted by cub(G)). In this paper we prove that cub(G) <= inverted right perpendicularlog(2) ninverted left perpendicular box(G), where n is the number of vertices in the graph. We also show that this upper bound is tight.Some immediate consequences of the above result are listed below: 1. Planar graphs have cubicity at most 3inverted right perpendicularlog(2) ninvereted left perpendicular.2. Outer planar graphs have cubicity at most 2inverted right perpendicularlog(2) ninverted left perpendicular.3. Any graph of treewidth tw has cubicity at most (tw + 2) inverted right perpendicularlog(2) ninverted left perpendicular. Thus, chordal graphs have cubicity at most (omega + 1) inverted right erpendicularlog(2) ninverted left perpendicular and circular arc graphs have cubicity at most (2 omega + 1)inverted right perpendicularlog(2) ninverted left perpendicular, where omega is the clique number.
Resumo:
Let G = (V, E) be a finite, simple and undirected graph. For S subset of V, let delta(S, G) = {(u, v) is an element of E : u is an element of S and v is an element of V - S} be the edge boundary of S. Given an integer i, 1 <= i <= vertical bar V vertical bar, let the edge isoperimetric value of G at i be defined as b(e)(i, G) = min(S subset of V:vertical bar S vertical bar=i)vertical bar delta(S, G)vertical bar. The edge isoperimetric peak of G is defined as b(e)(G) = max(1 <= j <=vertical bar V vertical bar)b(e)(j, G). Let b(v)(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi: 10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees. The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as T-d(2)), c(1)d <= b(e) (T-d(2)) <= d and c(2)d <= b(v)(T-d(2)) <= d where c(1), c(2) are constants. For a complete t-ary tree of depth d (denoted as T-d(t)) and d >= c log t where c is a constant, we show that c(1)root td <= b(e)(T-d(t)) <= td and c(2)d/root t <= b(v) (T-d(t)) <= d where c(1), c(2) are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T = (V, E, r) be a finite, connected and rooted tree - the root being the vertex r. Define a weight function w : V -> N where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index eta(T) be defined as the number of distinct weights in the tree, i.e eta(T) vertical bar{w(u) : u is an element of V}vertical bar. For a positive integer k, let l(k) = vertical bar{i is an element of N : 1 <= i <= vertical bar V vertical bar, b(e)(i, G) <= k}vertical bar. We show that l(k) <= 2(2 eta+k k)
Resumo:
The photophysical behavior of the triplets of three aliphatic thioketenes, namely di-tert-butylthioketene (1), 2,6-di-tert-butylcyclohexylthioketene (2) and 2,2,6,6-tetramethylcyclohexylthioketene, has been studied in fluid solutions at room temperature by nanosecond laser flash photolysis. Upon 532 nm laser excitation into the S1 state, the thioketenes in concentrated benzene solutions produce very short-lived transient absorptions (τ < 5 ns; λmax ≈ 450 nm) attributable to their triplets. The photogeneration of the latter under S1 excitation has also been established by energy transfer to all-trans-1,6-diphenyl-1,3,5-hexatriene. The factors which render the triplet lifetimes short are shown to be intrinsic in origin (rather than self-quenching). Unlike thiocarbonyl compounds in general, the thioketenes posses low intersystem crossing yields (less than 0.1 in benzene). From the kinetics of the quenching of a series of sensitizer triplets by 1 and 2, the thioketene triplet energies are estimated to be 43 – 44 kcal mol−1.
Resumo:
A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.
Resumo:
Polycrystals of orthorhobic carbonates RCO3 (R = Sr, Ba and Pb) were synthesised for the first time using formic acid as mineraliser. The unit cell parameters of this synthetic pure carbonates are: BaCO3:a=5.309, B=8.889, C=6.401; srCO3:a=5.108, B=8.420, C=6.040; PbCO3: A=5.176, B=8.511, C=6.137.
Resumo:
XPS studies of the interaction of carbon monoxide with surfaces of Fe, Co and Ni indicate that at 300 K, the disproportionation reaction is prominent up to exposures of 103 L giving rise to high surface concentrations of carbon. At higher exposures and higher temperatures, dissociation of carbon monoxide accompanied by the formation of surface oxide layers becomes more prominent. In the case of copper, disproportionation is prominent up to 104 L even at 500 K followed by dissociation at higher exposures. These results are also supported by Auger spectroscopic studies.
Resumo:
A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). Let Delta = Delta(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by K-n,K-n. Alon, McDiarmid and Reed observed that a'(K-p-1,K-p-1) = p for every prime p. In this paper we prove that a'(K-p,K-p) <= p + 2 = Delta + 2 when p is prime. Basavaraju, Chandran and Kummini proved that a'(K-n,K-n) >= n + 2 = Delta + 2 when n is odd, which combined with our result implies that a'(K-p,K-p) = p + 2 = Delta + 2 when p is an odd prime. Moreover we show that if we remove any edge from K-p,K-p, the resulting graph is acyclically Delta + 1 = p + 1-edge-colorable. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An improved higher order transverse shear deformation theory is employed to arrive at modified constitutive relations which can be used in the flexural, buckling and vibration analysis of laminated plates and shells. The strain energy for such systems is then expressed in terms of the displacements and the rotations for ready reference and use. Numerical values of vibration frequencies are obtained using this formulation employing Ritz's method of analysis. The results are compared with those available in the literature to validate the analysis presented.
Resumo:
EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.
Resumo:
The appearance of spinning side bands in the 2H NMR spectra of oriented molecules is investigated. A theoretical interpretation of the side-band intensities is carried out. Information derived on the director orientation and distribution as a function of spinning speedis reported.
Resumo:
THE use of NMR to investigate the quality of the oil as a function of maturity of the seeds is demonstrated for sunflower seeds. The percentages of the saturated and individual unsaturated aids are determined as a function of time after flowering of the seeds. The percentage of saturated fatty acids is found to decrease with maturity of seeds whereas the extent of the unsaturated acids increases.
Resumo:
Neutron diffraction techniques have been employed to investigate the structure of PbO-PbCl2 glasses as a function of composition in the nominal range PbO.PbCl2 to 9PbO.PbCl2. It is concluded that, whereas the first Pb-O distance is well defined, the distribution of Pb-Cl distances is much broader, in agreement with a previous EXAFS study.