19 resultados para 690200 Water Transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298-550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)(2)CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compute the entropy and transport properties of water in the hydration layer of dipalmitoylphosphatidylcholine bilayer by using a recently developed theoretical scheme two-phase thermodynamic model, termed as 2PT method; S.-T. Lin et al., J. Chem. Phys. 119, 11792 (2003)] based on the translational and rotational velocity autocorrelation functions and their power spectra. The weights of translational and rotational power spectra shift from higher to lower frequency as one goes from the bilayer interface to the bulk. Water molecules near the bilayer head groups have substantially lower entropy (48.36 J/mol/K) than water molecules in the intermediate region (51.36 J/mol/K), which have again lower entropy than the molecules (60.52 J/mol/K) in bulk. Thus, the entropic contribution to the free energy change (T Delta S) of transferring an interface water molecule to the bulk is 3.65 kJ/mol and of transferring intermediate water to the bulk is 2.75 kJ/mol at 300 K, which is to be compared with 6.03 kJ/mol for melting of ice at 273 K. The translational diffusion of water in the vicinity of the head groups is found to be in a subdiffusive regime and the rotational diffusion constant increases going away from the interface. This behavior is supported by the slower reorientational relaxation of the dipole vector and OH bond vector of interfacial water. The ratio of reorientational relaxation time for Legendre polynomials of order 1 and 2 is approximately 2 for interface, intermediate, and bulk water, indicating the presence of jump dynamics in these water molecules. (C) 2010 American Institute of Physics. doi:10.1063/1.3494115]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the effect of core-shell structure of Sodium Alginate based hydrogel beads and their size on certain activation threshold concentration of water for applications in swelling and pH sensing. This type of hydrogel experiences diffusive pressure due to transport of certain free charges across its interface with a solvent or electrolyte. This process is essentially a dynamic equilibrium of the electric force field, stress in the polymeric network with cage like structure and molecular diffusion including phase transformation due to pressure imbalance between the hydrogel and its surroundings. The effect of pH of the solvant on the swelling rate of these beads has been studied experimentally. A mathematical model of the swelling process has been developed by considering Nernst-Planck equation representing the migration of mobile ions and Er ions, Poisson equation representing the equilibrium of the electric field and mechanical field equation representing swelling of the gel. An attempt has been made to predict the experimentally observed phenomena using these numerical simulations. It is observed experimentally that certain minimum concentration called activation threshold concentration of the water molecules must be present in the hydrogel in order to activate the swelling process. For the required activation threshold concentration of water in the beads, the pH induced change in the rate of swelling is also investigated. This effect is analyzed for various different core-shell structures of the beads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study is to evaluate the ability of a European chemistry transport model, `CHIMERE' driven by the US meteorological model MM5, in simulating aerosol concentrations dust, PM10 and black carbon (BC)] over the Indian region. An evaluation of a meteorological event (dust storm); impact of change in soil-related parameters and meteorological input grid resolution on these aerosol concentrations has been performed. Dust storm simulation over Indo-Gangetic basin indicates ability of the model to capture dust storm events. Measured (AERONET data) and simulated parameters such as aerosol optical depth (AOD) and Angstrom exponent are used to evaluate the performance of the model to capture the dust storm event. A sensitivity study is performed to investigate the impact of change in soil characteristics (thickness of the soil layer in contact with air, volumetric water, and air content of the soil) and meteorological input grid resolution on the aerosol (dust, PM10, BC) distribution. Results show that soil parameters and meteorological input grid resolution have an important impact on spatial distribution of aerosol (dust, PM10, BC) concentrations.