113 resultados para 3 alpha-hydroxyjolkinolide A
Resumo:
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3 alpha,12 alpha,16 beta-trihydroxy-5 beta-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3 alpha,12 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di-and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16 beta-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3 alpha,7 alpha,16 alpha-trihydroxy-5 beta-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A simple and direct approach to both enantiomeric series of A-ring derivatives of 1 alpha,25-dihydroxyvitamin D-3 and the corresponding 1 alpha,3 alpha-derivatives, starting from the abundantly available R-carvone, is described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.
Resumo:
The solution conformation of a designed tetradecapeptide Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (Dpg-14) containing two di-n-propyl glycine (Dpg) residues has been investigated by H-1 NMR and circular dichroism in organic solvents. The peptide aggregates formed at a concentration of 3 mm in the apolar solvent CDCl3 were broken by the addition of 12% v/v of the more polar solvent DMSO-d(6). Successive NiH <-> Ni+1H NOEs observed over the entire length of the sequence in this solvent mixture together with the observation of several characteristic medium-range NOEs support a major population of continuous helical conformations for Dpg-14. Majority of the observed coupling constants ((3)(alpha)(JNHC)(H)) also support phi values in the helical conformation. Circular dichroism spectra recorded in methanol and propan-2-ol give further support in favor of helical conformation for Dpg-14 and the stability of the helix at higher temperature. Copyright (C) 2010 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Mucor piriformis was used to study the mode of transformation of 16-dehydroprogesterone (I, pregna-4, 16-diene-3, 20-dione) and 17 alpha-hydroxyprogesterone (II, 17 alpha-hydroxypregn-4-ene-3, 20-dione). Biotransformation products formed from I were 14 alpha-hydroxypregna-4, 16-diene-3, 20-dione (Ia), 7 alpha, 14 alpha-dihydroxypregna-4 16-diene-3, 20-dione (Ib), 3 beta, 7 alpha, 14 alpha-trihydroxy-5 alpha-pregn-16-en-20-one (Ic), and 3 alpha, 7 alpha, 14 alpha-trihydroxy-5 alpha-pregn-16-en-20-one (Id). Metabolites Ic and Id appear to be hitherto unknown. Timecourse studies suggested that the transformation is initiated by hydroxylation at the 14 alpha-position (Ia) followed by hydroxylation at the 7 alpha-position (Ib). Microsomes (105,000 g sediment) prepared from 16-dehydroprogesterone-induced cells hydroxylate I to its 14 alpha-hydroxy derivative (Ia) in the presence of NADPH. Incubation of Ia with the organism resulted in the formation of Ib, Ic and Id. Biotransformation products formed from compound II were 17 alpha, 20 alpha-dihydroxypregn-4-en-3-one (IIa), 7 alpha, 17 alpha-dihydroxypregn-4-ene-3, 20-dione (IIb), 6 beta, 17 alpha, 20 alpha-trihydroxypregn-4-en-3-one (IIc) and 11 alpha, 17 alpha, 20 alpha-trihydroxypregn-4-en-3-one (IId). Time-course studies indicated that IIa is the initial product formed, which is further hydroxylated either at the 6 beta or 11 alpha position. Incubation of IIa with the organism resulted in the formation of IIc and IId. Reduction of the 4-en-3-one system and 20-keto group has not been observed before in organisms of the order Mucorales. In addition, M. piriformis has been shown to carry out hydroxylation at the C-6, C-7, C-11 and C-14 positions in the steroid molecules tested.
Resumo:
A wide variety of novel compounds obtained by combining two types of known organogelators, viz., bile acid alkyl amides and pyrene alkanoic acids, were synthesized and screened for their gelation ability. The 3 alpha esters of 1-pyrene butyric acid (PBA) of alkylamides of deoxycholic acid (DCA) turned out to be effective in the gel formation with many organic solvents although the gelation has to be triggered by the addition of a charge transfer (CT) agent 2,4,7-trinitrofluorenone (TNF). The special feature of these molecules is that the organogelation is achieved only after derivatizing the acid moiety of the 1-pyrenealkanoic acids. Additionally, the gelation properties can be fine-tuned by inserting different functional groups at the bile acid side chain. The gels obtained are deep red in colour and optically transparent up to 2% w/v. The SEM studies of the obtained xerogels revealed bundled rod-like morphology without specialized branching.
Resumo:
The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) x(3) equivalent to y(2)z (mod p), where p is a given prime number. A nontrivial solution must also satisfy x(3) not equal y(2)z and 1 <= x, y, z < p(alpha), where alpha is a given real number such that 1/3 < alpha <= 1/2. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as x equivalent to v(2)z (mod p) and y equivalent to v(3)z (mod p). In this paper, we give a deterministic polynomial-time (O(ln(3) p) bit-operations) algorithm to determine, for a given v, a nontrivial solution to CSC, if one exists. Previously it took (O) over tilde (p(alpha)) time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers N satisfying the fractional part inequality {theta N} < phi (theta and phi are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter z in the former problem corresponds to determining N in the latter problem. We also show in the alpha = 1/2 case of CSC that for a certain class of primes the CSC problem can be solved deterministically in <(O)over tilde>(p(1/3)) time compared to the previous best of (O) over tilde (p(1/2)). It is empirically observed that about one out of three primes is covered by the above class. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Single-stranded DNA binding proteins (SSBs) are vital in all organisms. SSBs of Escherichia coli (EcoSSB) and Mycobacterium tuberculosis (MtuSSB) are homotetrameric. The N-terminal domains (NTD) of these SSBs (responsible for their tetramerization and DNA binding) are structurally well defined. However, their C-terminal domains (CTD) possess undefined structures. EcoSSB NTD consists of beta 1-beta 1'-beta 2-beta 3-alpha-beta 4-beta 45(1)-beta 45(2)-beta 5 secondary structure elements. MtuSSB NTD includes an additional beta-strand (beta 6) forming a novel hook-like structure. Recently, we observed that MtuSSB complemented an E. coli Delta ssb strain. However, a chimeric SSB (m beta 4-beta 5), wherein only the terminal part of NTD (beta 4-beta 5 region possessing L-45 loop) of EcoSSB was substituted with that from MtuSSB, failed to function in E. coli in spite of its normal DNA binding and oligomerization properties. Here, we designed new chimeras by transplanting selected regions of MtuSSB into EcoSSB to understand the functional significance of the various secondary structure elements within SSB. All chimeric SSBs formed homotetramers and showed normal DNA binding. The m beta 4-beta 6 construct obtained by substitution of the region downstream of beta 5 in m beta 4-beta 5 SSB with the corresponding region (beta 6) of MtuSSB complemented the E. coli strain indicating a functional interaction between the L-45 loop and the beta 6 strand of MtuSSB.
Resumo:
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (P1, Z = 1) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc, Natl, Acad. Sci. USA 83, 9284-9288). The monoclinic form (P2(1), Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal system, but small changes in conformational angles are associated with a shift of the helix from a predominantly alpha-type to a predominantly 3(10)-type. The r.m.s. deviation of 33 atoms in the backbone and C beta positions of residues 2-8 is only 0.29 A between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P2(1) cell, a = 9.422(2) A, b = 36.392(11) A, c = 10.548(2) A, beta = 111.31(2) degrees and V = 3369.3 A for 2 molecules of C60H97N11O13 per cell.
Resumo:
The effects of inserting unsubstituted omega-amino acids into the strand segments of model beta-hairpin peptides was investigated by using four synthetic decapeptides, Boc-Lcu-Val-Xxx-Val-D-Pro-Gly-Leu-Xxx-Val-Val- OMe: pepticle 1 (Xxx=Gly), pepticle 2 (Xxx=beta Gly=beta hGly=homoglycine, beta-glycine), pepticle 3 (Xxx=gamma Abu=gamma-aminobutyric acid), pepticle 4 (Xxx= delta Ava=delta-aminovaleric acid). H-1 NMR studies (500 MHz, methanol) reveal several critical cross-strand NOEs, providing evidence for P-hairpin conformations in peptides 2-4. In peptide 3, the NMR results support the formation of the nucleating turn, however, evidence for cross-strand registry is not detected. Single-crystal X-ray diffraction studies of peptide 3 reveal a beta-hairpin conformation for both molecules in the crystallographic asymmetric unit, stabilized by four cross-strand hydrogen bonds, with the gamma Abu residues accommodated within the strands. The D-Pro-Gly segment in both molecules (A,B) adopts a type II' beta-turn conformation. The circular dichroism spectrum for peptide 3 is characterized by a negative CD band at 229 rim, whereas for peptides 2 and 4, the negative band is centered at 225 nm, suggesting a correlation between the orientation of the amide units in the strand segments and the observed CD pattern.
Resumo:
A novel sonication-promoted Barbier reaction putatively generated the titled species from the corresponding naphthotriazinylmethyl chloride and magnesium in THF: its formal addition to a variety of carbonyl compounds in situ occurred in excellent yields. Subsequent catalytic hydrogenolysis of the triazine moiety demasked the amine, thus defining a route to various phenylethylamines (including the alkaloid 'mescaline'), or ethanolamines (in two cases), in excellent overall yields. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
C22H31NO2.H2 O, M r = 359" 5, orthorhombic,P2~212 ~, a= 10.032 (1), b= 11.186 (1), C = 17.980 (1)/~,, U= 2017.48/~3, Z = 4, D x = 1.276 Mg m -a, 2(Cu Kct) = 1.5418/~, # = 0.69 mm -~,F(000) = 784, T = 293 K. Final R = 0.05 for 1972 unique reflections with I > 3o(/). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(20) displaced from their respective ring planes by 0-616 (2) and 0.648 (3)/~. The A/B ring junction is quasi-trans,whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9) and C(13)-C(14) respectively.The D/E junction shows cis fusion.
Resumo:
Abstract. C25H44N20 , M r= 388.6, orthorhombic, P21212 I, a = 6.185 (2), b = 18.123 (2), c = 20.852 (2) A, U= 2337.2 A 3, Z = 4, D x = 1.104 Mg m -a, 2(Cu Ka) = 1.5418 A,/~ = 0.47 mm -~, F(000) = 864, T= 293 K. Final R - 0.038 for 1791 reflections with I >_ 3a(I). Rings A and C are in chair conformation. Ring B is in an 8fl,9a-half-chair conformation. Ring D adopts a conformation in between 13fl,14a-half-chair and 13t-envelope. There is a quasitrans fusion of rings A and B, whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9)and C(13)-C(14).
Resumo:
The microorganism Mucor piriformis transforms androst-4-ene-3,17-dione into a major and several minor metabolites. X-ray crystallographic analysis of two of these metabolites was undertaken to determine unambiguously their composition and chirality. Crystals belong to the orthorhombic space-group P2(1)2(1)2(1), with a = 7.199(4) angstrom and a = 6.023(3) angstrom, b = 11.719(3) angstrom and b = 13.455(4) angstrom, c = 20.409(3) angstrom and c = 20.702(4) angstrom for the two title compounds, respectively. The structures have been refined to final R values of 0.060 and 0.040, respectively.