29 resultados para 2-adic complexity
Resumo:
Generalized spatial modulation (GSM) uses n(t) transmit antenna elements but fewer transmit radio frequency (RF) chains, n(rf). Spatial modulation (SM) and spatial multiplexing are special cases of GSM with n(rf) = 1 and n(rf) = n(t), respectively. In GSM, in addition to conveying information bits through n(rf) conventional modulation symbols (for example, QAM), the indices of the n(rf) active transmit antennas also convey information bits. In this paper, we investigate GSM for large-scale multiuser MIMO communications on the uplink. Our contributions in this paper include: 1) an average bit error probability (ABEP) analysis for maximum-likelihood detection in multiuser GSM-MIMO on the uplink, where we derive an upper bound on the ABEP, and 2) low-complexity algorithms for GSM-MIMO signal detection and channel estimation at the base station receiver based on message passing. The analytical upper bounds on the ABEP are found to be tight at moderate to high signal-to-noise ratios (SNR). The proposed receiver algorithms are found to scale very well in complexity while achieving near-optimal performance in large dimensions. Simulation results show that, for the same spectral efficiency, multiuser GSM-MIMO can outperform multiuser SM-MIMO as well as conventional multiuser MIMO, by about 2 to 9 dB at a bit error rate of 10(-3). Such SNR gains in GSM-MIMO compared to SM-MIMO and conventional MIMO can be attributed to the fact that, because of a larger number of spatial index bits, GSM-MIMO can use a lower-order QAM alphabet which is more power efficient.
Resumo:
This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.
A Low ML-Decoding Complexity, High Coding Gain, Full-Rate, Full-Diversity STBC for 4 x 2 MIMO System
Resumo:
This paper proposes a full-rate, full-diversity space-time block code(STBC) with low maximum likelihood (ML) decoding complexity and high coding gain for the 4 transmit antenna, 2 receive antenna (4 x 2) multiple-input multiple-output (MIMO) system that employs 4/16-QAM. For such a system, the best code known is the DjABBA code and recently, Biglieri, Hong and Viterbo have proposed another STBC (BHV code) for 4-QAM which has lower ML-decoding complexity than the DjABBA code but does not have full-diversity like the DjABBA code. The code proposed in this paper has the same ML-decoding complexity as the BHV code for any square M-QAM but has full-diversity for 4- and 16-QAM. Compared with the DjABBA code, the proposed code has lower ML-decoding complexity for square M-QAM constellation, higher coding gain for 4- and 16-QAM, and hence a better codeword error rate (CER) performance. Simulation results confirming this are presented.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 x 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.
Resumo:
We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.
Resumo:
In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.
Resumo:
In this paper, Space-Time Block Codes (STBCs) with reduced Sphere Decoding Complexity (SDC) are constructed for two-user Multiple-Input Multiple-Output (MIMO) fading multiple access channels. In this set-up, both the users employ identical STBCs and the destination performs sphere decoding for the symbols of the two users. First, we identify the positions of the zeros in the R matrix arising out of the Q-R decomposition of the lattice generator such that (i) the worst case SDC (WSDC) and (ii) the average SDC (ASDC) are reduced. Then, a set of necessary and sufficient conditions on the lattice generator is provided such that the R matrix has zeros at the identified positions. Subsequently, explicit constructions of STBCs which results in the reduced ASDC are presented. The rate (in complex symbols per channel use) of the proposed designs is at most 2/N-t where N-t denotes the number of transmit antennas for each user. We also show that the class of STBCs from complex orthogonal designs (other than the Alamouti design) reduce the WSDC but not the ASDC.
Resumo:
Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.
Resumo:
This paper looks at the complexity of four different incremental problems. The following are the problems considered: (1) Interval partitioning of a flow graph (2) Breadth first search (BFS) of a directed graph (3) Lexicographic depth first search (DFS) of a directed graph (4) Constructing the postorder listing of the nodes of a binary tree. The last problem arises out of the need for incrementally computing the Sethi-Ullman (SU) ordering [1] of the subtrees of a tree after it has undergone changes of a given type. These problems are among those that claimed our attention in the process of our designing algorithmic techniques for incremental code generation. BFS and DFS have certainly numerous other applications, but as far as our work is concerned, incremental code generation is the common thread linking these problems. The study of the complexity of these problems is done from two different perspectives. In [2] is given the theory of incremental relative lower bounds (IRLB). We use this theory to derive the IRLBs of the first three problems. Then we use the notion of a bounded incremental algorithm [4] to prove the unboundedness of the fourth problem with respect to the locally persistent model of computation. Possibly, the lower bound result for lexicographic DFS is the most interesting. In [5] the author considers lexicographic DFS to be a problem for which the incremental version may require the recomputation of the entire solution from scratch. In that sense, our IRLB result provides further evidence for this possibility with the proviso that the incremental DFS algorithms considered be ones that do not require too much of preprocessing.
Resumo:
Recently, Guo and Xia gave sufficient conditions for an STBC to achieve full diversity when a PIC (Partial Interference Cancellation) or a PIC-SIC (PIC with Successive Interference Cancellation) decoder is used at the receiver. In this paper, we give alternative conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. Using these conditions, we construct a new class of full diversity PIC-SIC decodable codes, which contain the Toeplitz codes and a family of codes recently proposed by Zhang, Xu et. al. as proper subclasses. With the help of the new criteria, we also show that a class of PIC-SIC decodable codes recently proposed by Zhang, Shi et. al. can be decoded with much lower complexity than what is reported, without compromising on full diversity.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
Very Long Instruction Word (VLIW) architectures exploit instruction level parallelism (ILP) with the help of the compiler to achieve higher instruction throughput with minimal hardware. However, control and data dependencies between operations limit the available ILP, which not only hinders the scalability of VLIW architectures, but also result in code size expansion. Although speculation and predicated execution mitigate ILP limitations due to control dependencies to a certain extent, they increase hardware cost and exacerbate code size expansion. Simultaneous multistreaming (SMS) can significantly improve operation throughput by allowing interleaved execution of operations from multiple instruction streams. In this paper we study SMS for VLIW architectures and quantify the benefits associated with it using a case study of the MPEG-2 video decoder. We also propose the notion of virtual resources for VLIW architectures, which decouple architectural resources (resources exposed to the compiler) from the microarchitectural resources, to limit code size expansion. Our results for a VLIW architecture demonstrate that: (1) SMS delivers much higher throughput than that achieved by speculation and predicated execution, (2) the increase in performance due to the addition of speculation and predicated execution support over SMS averages around 12%. The minor increase in performance might not warrant the additional hardware complexity involved, and (3) the notion of virtual resources is very effective in reducing no-operations (NOPs) and consequently reduce code size with little or no impact on performance.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.