110 resultados para 124-773B
Resumo:
We report new radio continuum and 21 cm HI observations using the Giant Metrewave Radio Telescope (GMRT) of the group Holmberg 124 ( Ho 124) comprising four late-type galaxies, namely NGC 2820, Mrk 108, NGC 2814 and NGC 2805. The three galaxies, NGC 2820, Mrk 108 and NGC 2814 which are closely located in the sky plane have clearly undergone tidal interactions as seen from the various morphological tidal signatures and debris. Moreover we note various features in the group members which we believe might be due to ram pressure. In this paper, we describe four interesting results emerging from our observations: a) detection of the tidal radio continuum bridge at 330 MHz connecting the galaxies NGC 2820+ Mrk 108 with NGC 2814. The radio bridge was discovered at 1465 MHz by van der Hulst & Hummel ( 1985, A& A, 150, 17). We find that the bridge has a fairly steep spectrum with a spectral index alpha(S proportional to nu(alpha)) of - 1.8(-0.2)(+0.3) which is much steeper than the - 0.8 quoted by van der Hulst & Hummel ( 1985); b) detection of other tidal features like the tilted HI and radio continuum disk of NGC 2814, a HI streamer and a radio continuum tail arising from the south of NGC 2814. We also report the detection of a possible tidal dwarf galaxy in HI; c) sharp truncation in the HI distribution in the south of NGC 2820 and in the HI and radio continuum distribution in the north of NGC 2814. The optical disks in both the cases look undisturbed. As pointed out by Davis et al. ( 1997, AJ, 114, 613), ram pressure affects different components of the interstellar medium to varying degrees. Simple estimates of pressure in different components of the interstellar medium ( radio continuum, Ha and HI) in NGC 2820 indicate that ram pressure will significantly influence HI; d) detection of a large one-sided HI loop to the north of NGC 2820. No radio continuum emission or Ha emission is associated with the HI loop. We discuss various scenarios for the origin of this loop including a central starburst, ram pressure stripping and tidal interaction. We do not support the central starburst scenario since the loop is not detected in ionized gas. Using the upper limit on X-ray luminosity of Ho 124 (Mulchaey et al. 2003, ApJS, 145, 39), we estimate an upper limit on the intragroup medium (IGrM) density of 8.8 x 10(-4) cm(-3). For half this electron density, we estimate the ram pressure force of the IGrM to be comparable to the gravitational pull of the disk of NGC 2820. Since tidal interaction has obviously influenced the group, we suggest that the loop could have formed by ram pressure stripping if tidal effects had reduced the surface density of HI in NGC 2820. From the complex observational picture of Ho 124 and the numerical estimates, we suggest that the evolution of the Ho 124 group may be governed by both tidal forces due to the interaction and the ram pressure due to motion of the member galaxies in the IGrM and that the IGrM densities should not be too low (i.e. >= 4 x 10(-4)). However this needs to be verified by further observations.
Resumo:
An analytical and experimental study of the hydraulic jump in stilling basins with abrupt drop and sudden enlargement, called the spatial B-jump here, is carried out for finding the sequent depth ratio and resulting energy dissipation. The spatial B-jump studied has its toe downstream of the expansion section, and the stream lines at the toe are characterized by downward curvature. An expression is obtained for the sequent depth ratio based on the momentum equation with suitable assumptions for the extra pressure force term because of the abrupt drop in the bed and sudden enlargement in the basin width. Predictions compare favorably with experiments. It is shown that the spatial B-jump needs less tailwater depth, thereby enhancing the stability of the jump when compared either with spatial jump, which forms in sudden expanding channels, or with B-jump, which forms in a channel with an abrupt drop in bed. It is also shown that there is a significant increase in relative energy loss for the spatial B-jump compared to either the spatial jump or B-jump alone.
Resumo:
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNaseS and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model, According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
This paper presents the programming an FPGA (Field Programmable Gate Array) to emulate the dynamics of DC machines. FPGA allows high speed real time simulation with high precision. The described design includes block diagram representation of DC machine, which contain all arithmetic and logical operations. The real time simulation of the machine in FPGA is controlled by user interfaces they are Keypad interface, LCD display on-line and digital to analog converter. This approach provides emulation of electrical machine by changing the parameters. Separately Exited DC machine implemented and experimental results are presented.
Resumo:
The recently introduced generalized pencil of Sudarshan which gives an exact ray picture of wave optics is analysed in some situations of interest to wave optics. A relationship between ray dispersion and statistical inhomogeneity of the field is obtained. A paraxial approximation which preserves the rectilinear propagation character of the generalized pencils is presented. Under this approximation the pencils can be computed directly from the field conditions on a plane, without the necessity to compute the cross-spectral density function in the entire space as an intermediate quantity. The paraxial results are illustrated with examples. The pencils are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling leads to a natural generalization of the Fraunhofer range criterion and of the classical van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The recently derived results of radiometry with partially coherent sources are shown to be simple consequences of this scaling.
Resumo:
The inhibitory action of the anticancer antibiotic, Adriamycin, on succinate-dependent oxidative phosphorylation in heart mitochondria was markedly potentiated by the presence of hexokinase in the reaction medium. This 'hexokinase effect' was not observed in the oxidation of NAD+-linked substrates, or when liver or kidney mitochondria were used in place of heart mitochondria. These results offer a biochemical explanation for the extreme cardiac toxicity of the drug.
Resumo:
The problem of designing an optimum Lanchester damper for a viscously damped single degree of freedom system subjected to inertial harmonic excitation is investigated. Two criteria are used for optimizing the performance of the damper: (i) minimum motion transmissibility; (ii) minimum force transmissibility. Explicit expressions are developed for determining the absorber parameters.
Resumo:
Ca2+ ions are absolutely necessary for the propagation of mycobacteriophage I3 in synthetic medium. These ions are required for successful infection of the host and during the entire span of the intracellular development of the phage. A direct assay of the phage DNA injection using 32[P] labelled phage, showns that Ca2+ ions are necessary for the injection process. The injection itself is a slow process and takes 15 min to complete at 37°C. The bacteria infected in presence of Ca2+ tend to abort if the ions are subsequently withdrawn from the growth medium. The effect of calcium withdrawal is maximally felt during the early part of the latent period; however, later supplementation of Ca2+ ions salvage phage production and the mature phage progeny appear after a delayed interval, proportional to the time of addition of Ca2+.
Resumo:
Compton profile data are used to investigate the ground state wavefunction of graphite. The results of two new $\gamma$-ray measurements are reported and compared with the results of earlier $\gamma$-ray and electron scattering measurements. A tight-binding calculation has been carried out and the results of earlier calculations based on a molecular model and a pseudo-potential wavefunction are considered. The analysis, in terms of the reciprocal form factor, shows that none of the calculations gives an adequate description of the data in the basal plane although the pseudo-potential calculation describes the anisotropy in the plane reasonably well. In the basal plane the zero-crossing theorem appears to be violated and this problem must be resolved before more accurate models can be derived. In the c-axis direction the molecular model and the tight binding calculation give better agreement with the experimental data than does the pseudopotential calculation.
Resumo:
The relation between optical Barker codes and self-orthogonal convolutional codes is pointed out. It is then used to update the results in earlier publication.
Resumo:
Using the framework of a new relaxation system, which converts a nonlinear viscous conservation law into a system of linear convection-diffusion equations with nonlinear source terms, a finite variable difference method is developed for nonlinear hyperbolic-parabolic equations. The basic idea is to formulate a finite volume method with an optimum spatial difference, using the Locally Exact Numerical Scheme (LENS), leading to a Finite Variable Difference Method as introduced by Sakai [Katsuhiro Sakai, A new finite variable difference method with application to locally exact numerical scheme, journal of Computational Physics, 124 (1996) pp. 301-308.], for the linear convection-diffusion equations obtained by using a relaxation system. Source terms are treated with the well-balanced scheme of Jin [Shi Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, Mathematical Modeling Numerical Analysis, 35 (4) (2001) pp. 631-645]. Bench-mark test problems for scalar and vector conservation laws in one and two dimensions are solved using this new algorithm and the results demonstrate the efficiency of the scheme in capturing the flow features accurately.
Resumo:
Glycodelin A is a progesterone-induced endometrial glycoprotein which has been amply documented to play a role in down-modulation of the maternal immune response to fetal allo-antigens and to be indispensable for the maintenance and progression of pregnancy. Earlier studies from our laboratory have focused on the effect of glycodelin on T cells, key regulators of both the antibody and cell-mediated arms of the acquired immune system. Glycodelin-induced apoptosis inactivated T cells occurs through a caspase-dependant intrinsic mitochondrial pathway. Interestingly, glycodelin inhibited the proliferation of B cells but did not induce apoptosis. More recently, we have studied the effect of glycodelin on the cells of the innate immune system, namely monocytes and NK cells. We have found that glycodelin induced apoptosis in monocytic cells before their differentiation to macrophages, via the mitochondrial pathway, but did not affect their phagocytic capacity after differentiation. Glycodelin induced apoptosis in NK cells but this activity was independent of caspases. In conclusion, glycodelin is observed to affect many cells of the immune system, although the nature of the effect and signaling mechanisms involved in each cell type may be distinct.
Resumo:
Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 angstrom resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alpha beta alpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.