2 resultados para wax moth

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 um and 18 um) and concentration (0 - 12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 um capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120C to yield a glass transition temperature of 127C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizes (25 um and 42 um) and concentrations (0 - 11 vol%). Incorporating 9 vol% 42 um capsules or 11 vol% 25 um capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196C to 35C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among insects, which are the most diverse eukaryotic group on earth, Lepidoptera is one of four enormously diverse orders, with approximately 10,000 described species in North America. Within the order, Nearctic “microlepidoptera,” which represent an overwhelmingly large percentage of diversity within the order, remain poorly known despite their ecological importance in many plant communities. In this thesis, I undertook several studies of microlepidoptera diversity in a natural community type (hill prairie) and a managed community type (biofuel feedstock). In two Illinois hill prairies differing in size, latitude, and plant composition, alpha diversity of Pyraloidea and Tortricidae was similar, but the prairies were found to support different sets of species of these moth groups. It is concluded that the similarity in alpha diversity occurs because the larger prairie supports primarily a complement of moth species that feed as larvae on prairie plants (especially species of Asteraceae and Fabaceae), whereas the moths collected in the small prairie represent relatively few prairie-associated species, plus a large component of species that feed as larvae on deciduous trees that surround the prairie. This agrees with the finding of high beta diversity of moths between the sites, which reflects a high level of larval hostplant specificity in most species of Pyraloidea and Tortricidae. Based on published information plus observations made on microlepidoptera collected during the course of this study, 31 families of basal microlepidoptera were reviewed with an aim toward evaluating the likelihood of their including species that are dependent on tallgrass prairie. Of these families, 12 were evaluated as possible, and two as likely or certain, to include prairie-dependent species. In a comparison of moth diversity in light-trap samples from corn, miscanthus, switchgrass, and native prairie, alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Moth species complements generally were similar among the biofuel crops, and prairie shared higher species complementarity with switchgrass than with corn or miscanthus. These findings suggest that large-scale conversion of land to biofuel crops may, to a substantial degree, detrimentally affect arthropod biodiversity, with a resulting loss of valuable arthropod-derived ecosystem services both within the cropping systems and in the surrounding landscape. During the course of this study, rearing efforts yielded two species of moths of the family Gelechiidae, both of which are monophagous leaf feeders on leadplant, Amorpha canescens (Fabaceae). Because these moths are restricted to tallgrass prairie, they are likely to be of interest to conservation biologists. In the interest of naming the moths to facilitate communication regarding them, and to augment our taxonomic knowledge of their respective genera, the moths are described, and diagnoses are provided to differentiate them from similar, related species.