3 resultados para user-driven security adaptation

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sharpening is a powerful image transformation because sharp edges can bring out image details. Sharpness is achieved by increasing local contrast and reducing edge widths. We present a method that enhances sharpness of images and thereby their perceptual quality. Most existing enhancement techniques require user input to improve the perception of the scene in a manner most pleasing to the particular user. Our goal of image enhancement is to improve the perception of sharpness in digital images for human viewers. We consider two parameters in order to exaggerate the differences between local intensities. The two parameters exploit local contrast and widths of edges. We start from the assumption that color, texture, or objects of focus such as faces affect the human perception of photographs. When human raters are presented with a collection of images with different sharpness and asked to rank them according to perceived sharpness, the results have shown that there is a statistical consensus among the raters. We introduce a ramp enhancement technique by modifying the optimal overshoot in the ramp for different region contrasts as well as the new ramp width. Optimal parameter values are searched to be applied to regions under the criteria mentioned above. In this way, we aim to enhance digital images automatically to create pleasing image output for common users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovery Driven Analysis (DDA) is a common feature of OLAP technology to analyze structured data. In essence, DDA helps analysts to discover anomalous data by highlighting 'unexpected' values in the OLAP cube. By giving indications to the analyst on what dimensions to explore, DDA speeds up the process of discovering anomalies and their causes. However, Discovery Driven Analysis (and OLAP in general) is only applicable on structured data, such as records in databases. We propose a system to extend DDA technology to semi-structured text documents, that is, text documents with a few structured data. Our system pipeline consists of two stages: first, the text part of each document is structured around user specified dimensions, using semi-PLSA algorithm; then, we adapt DDA to these fully structured documents, thus enabling DDA on text documents. We present some applications of this system in OLAP analysis and show how scalability issues are solved. Results show that our system can handle reasonable datasets of documents, in real time, without any need for pre-computation.