3 resultados para the Balanced Scorecard

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge is one of the most important assets for surviving in the modern business environment. The effective management of that asset mandates continuous adaptation by organizations, and requires employees to strive to improve the company's work processes. Organizations attempt to coordinate their unique knowledge with traditional means as well as in new and distinct ways, and to transform them into innovative resources better than those of their competitors. As a result, how to manage the knowledge asset has become a critical issue for modern organizations, and knowledge management is considered the most feasible solution. Knowledge management is a multidimensional process that identifies, acquires, develops, distributes, utilizes, and stores knowledge. However, many related studies focus only on fragmented or limited knowledge-management perspectives. In order to make knowledge management more effective, it is important to identify the qualitative and quantitative issues that are the foundation of the challenge of effective knowledge management in organizations. The main purpose of this study was to integrate the fragmented knowledge management perspectives into the holistic framework, which includes knowledge infrastructure capability (technology, structure, and culture) and knowledge process capability (acquisition, conversion, application, and protection), based on Gold's (2001) study. Additionally, because the effect of incentives ̶̶ which is widely acknowledged as a prime motivator in facilitating the knowledge management process ̶̶ was missing in the original framework, this study included the importance of incentives in the knowledge management framework. This study also identified the relationship of organizational performance from the standpoint of the Balanced Scorecard, which includes the customer-related, internal business process, learning & growth, and perceptual financial aspects of organizational performance in the Korean business context. Moreover, this study identified the relationship with the objective financial performance by calculating the Tobin's q ratio. Lastly, this study compared the group differences between larger and smaller organizations, and manufacturing and nonmanufacturing firms in the study of knowledge management. Since this study was conducted in Korea, the original instrument was translated into Korean through the back translation technique. A confirmatory factor analysis (CFA) was used to examine the validity and reliability of the instrument. To identify the relationship between knowledge management capabilities and organizational performance, structural equation modeling (SEM) and multiple regression analysis were conducted. A Student's t test was conducted to examine the mean differences. The results of this study indicated that there is a positive relationship between effective knowledge management and organizational performance. However, no empirical evidence was found to suggest that knowledge management capabilities are linked to the objective financial performance, which remains a topic for future review. Additionally, findings showed that knowledge management is affected by organization's size, but not by type of organization. The results of this study are valuable in establishing a valid and reliable survey instrument, as well as in providing strong evidence that knowledge management capabilities are essential to improving organizational performance currently and making important recommendations for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Power system engineers face a double challenge: to operate electric power systems within narrow stability and security margins, and to maintain high reliability. There is an acute need to better understand the dynamic nature of power systems in order to be prepared for critical situations as they arise. Innovative measurement tools, such as phasor measurement units, can capture not only the slow variation of the voltages and currents but also the underlying oscillations in a power system. Such dynamic data accessibility provides us a strong motivation and a useful tool to explore dynamic-data driven applications in power systems. To fulfill this goal, this dissertation focuses on the following three areas: Developing accurate dynamic load models and updating variable parameters based on the measurement data, applying advanced nonlinear filtering concepts and technologies to real-time identification of power system models, and addressing computational issues by implementing the balanced truncation method. By obtaining more realistic system models, together with timely updated parameters and stochastic influence consideration, we can have an accurate portrait of the ongoing phenomena in an electrical power system. Hence we can further improve state estimation, stability analysis and real-time operation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deposition of indium tin oxide (ITO) among various transparent conductive materials on flexible organic substrates has been intensively investigated among academics and industrials for a whole new array of imaginative optoelectronic products. One critical challenge coming with the organic materials is their poor thermal endurances, considering that the process currently used to produce industry-standard ITO usually involves relatively high substrate temperature in excess of 200°C and post-annealing. A lower processing temperature is thus demanded, among other desires of high deposition rate, large substrate area, good uniformity, and high quality of the deposited materials. For this purpose, we developed an RF-assisted closed-field dual magnetron sputtering system. The “prototype” system consists of a 3-inch unbalanced dual magnetron operated at a closed-field configuration. An RF coil was fabricated and placed between the two magnetron cathodes to initiate a secondary plasma. The concept is to increase the ionization faction with the RF enhancement and utilize the ion energy instead of thermal energy to facilitate the ITO film growth. The closed-field unbalanced magnetrons create a plasma in the intervening region rather than confine it near the target, thus achieving a large-area processing capability. An RF-compensated Langmuir probe was used to characterize and compare the plasmas in mirrored balanced and closed-field unbalanced magnetron configurations. The spatial distributions of the electron density ne and electron temperature Te were measured. The density profiles reflect the shapes of the plasma. Rather than intensively concentrated to the targets/cathodes in the balanced magnetrons, the plasma is more dispersive in the closed-field mode with a twice higher electron density in the substrate region. The RF assistance significantly enhances ne by one or two orders of magnitude higher. The effect of various other parameters, such as pressure, on the plasma was also studied. The ionization fractions of the sputtered atoms were measured using a gridded energy analyzer (GEA) combined with a quartz crystal microbalance (QCM). The presence of the RF plasma effectively increases the ITO ionization fraction to around 80% in both the balanced and closed-field unbalanced configurations. The ionization fraction also varies with pressure, maximizing at 5-10 mTorr. The study of the ionization not only facilitates understanding the plasma behaviors in the RF-assisted magnetron sputtering, but also provides a criterion for optimizing the film deposition process. ITO films were deposited on both glass and plastic (PET) substrates in the 3-inch RF-assisted closed-field magnetrons. The electrical resistivity and optical transmission transparency of the ITO films were measured. Appropriate RF assistance was shown to dramatically reduce the electrical resistivity. An ITO film with a resistivity of 1.2×10-3 Ω-cm and a visible light transmittance of 91% was obtained with a 225 W RF enhancement, while the substrate temperature was monitored as below 110°C. X-ray photoelectron spectroscopy (XPS) was employed to confirm the ITO film stoichiometry. The surface morphology of the ITO films and its effect on the film properties were studied using atomic force microscopy (AFM). The prototype of RF-assisted closed-field magnetron was further extended to a larger rectangular shaped dual magnetron in a flat panel display manufacturing system. Similar improvement of the ITO film conductivities by the auxiliary RF was observed on the large-area PET substrates. Meanwhile, significant deposition rates of 25-42 nm/min were achieved.