3 resultados para temperature-based models
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The first part of the thesis describes a new patterning technique--microfluidic contact printing--that combines several of the desirable aspects of microcontact printing and microfluidic patterning and addresses some of their important limitations through the integration of a track-etched polycarbonate (PCTE) membrane. Using this technique, biomolecules (e.g., peptides, polysaccharides, and proteins) were printed in high fidelity on a receptor modified polyacrylamide hydrogel substrate. The patterns obtained can be controlled through modifications of channel design and secondary programming via selective membrane wetting. The protocols support the printing of multiple reagents without registration steps and fast recycle times. The second part describes a non-enzymatic, isothermal method to discriminate single nucleotide polymorphisms (SNPs). SNP discrimination using alkaline dehybridization has long been neglected because the pH range in which thermodynamic discrimination can be done is quite narrow. We found, however, that SNPs can be discriminated by the kinetic differences exhibited in the dehybridization of PM and MM DNA duplexes in an alkaline solution using fluorescence microscopy. We combined this method with multifunctional encoded hydrogel particle array (fabricated by stop-flow lithography) to achieve fast kinetics and high versatility. This approach may serve as an effective alternative to temperature-based method for analyzing unamplified genomic DNA in point-of-care diagnostic.
Resumo:
Reliability and dependability modeling can be employed during many stages of analysis of a computing system to gain insights into its critical behaviors. To provide useful results, realistic models of systems are often necessarily large and complex. Numerical analysis of these models presents a formidable challenge because the sizes of their state-space descriptions grow exponentially in proportion to the sizes of the models. On the other hand, simulation of the models requires analysis of many trajectories in order to compute statistically correct solutions. This dissertation presents a novel framework for performing both numerical analysis and simulation. The new numerical approach computes bounds on the solutions of transient measures in large continuous-time Markov chains (CTMCs). It extends existing path-based and uniformization-based methods by identifying sets of paths that are equivalent with respect to a reward measure and related to one another via a simple structural relationship. This relationship makes it possible for the approach to explore multiple paths at the same time,· thus significantly increasing the number of paths that can be explored in a given amount of time. Furthermore, the use of a structured representation for the state space and the direct computation of the desired reward measure (without ever storing the solution vector) allow it to analyze very large models using a very small amount of storage. Often, path-based techniques must compute many paths to obtain tight bounds. In addition to presenting the basic path-based approach, we also present algorithms for computing more paths and tighter bounds quickly. One resulting approach is based on the concept of path composition whereby precomputed subpaths are composed to compute the whole paths efficiently. Another approach is based on selecting important paths (among a set of many paths) for evaluation. Many path-based techniques suffer from having to evaluate many (unimportant) paths. Evaluating the important ones helps to compute tight bounds efficiently and quickly.
Resumo:
Hand detection on images has important applications on person activities recognition. This thesis focuses on PASCAL Visual Object Classes (VOC) system for hand detection. VOC has become a popular system for object detection, based on twenty common objects, and has been released with a successful deformable parts model in VOC2007. A hand detection on an image is made when the system gets a bounding box which overlaps with at least 50% of any ground truth bounding box for a hand on the image. The initial average precision of this detector is around 0.215 compared with a state-of-art of 0.104; however, color and frequency features for detected bounding boxes contain important information for re-scoring, and the average precision can be improved to 0.218 with these features. Results show that these features help on getting higher precision for low recall, even though the average precision is similar.