2 resultados para signal processing in the encrypted domain
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Abstract The two-component based chemotaxis signal transduction system allows flagellated bacteria to sense their surrounding chemical environment and move towards more favorable conditions. The attractant signals can be sensed by transmembrane chemoreceptors, and then transmitted to the histidine kinase CheA. Once activated, CheA interacts with the response regulator CheY through phosphorelay, which causes a change in the rotation of the flagella. The direction of flagella rotation determines whether a cell swims straight or just tumbles. Cells also need adaptation to respond to a change in chemical concentrations, and return to their prestimulated level. Adaptation in the B. subtilis chemotaxis system is achieved by three coordinated systems: the methylation system, the CheC/CheD/CheY-p system and the CheV system. CheD, the previously identified receptor deamidase, was shown to be critical to the ability of B. subtilis to perform chemotaxis and is the main focus of this study. This study started from characterization of the enzymatic mechanism of CheD. Results showed that CheD deamidase uses a cysteine hydrolase mechanism. The catalytic triad consisting of Cys33-His50-Thr27, and Ser27 is essential for receptor recognition and binding. In addition, in this study CheC was found to inhibit CheD’s deamidase activity. Through mutant screening, Phe102 on CheD was found to be the essential site to interact with CheC. Furthermore, the CheD/CheC interaction is necessary for the robust chemotaxis in vivo as demonstrated by the cheD (F102E) mutant, which lacks the ability to swim on swarm plates. Despite its deamidase activity, we hypothesized that CheD’s main role is its involvement in the CheD-CheC-CheY-p negative feedback pathway during adaptation. In particular, CheD is likely to help stabilize the transient kinase-activating state through binding to receptors. When CheY-p level is increased, CheC-CheY-p complex may attract CheD away from receptors. In this study, CheC-CheD binding kinetics with CheY or CheYp presence was successfully obtained by a series of SPR experiments. The increased affinity of CheD for CheC in presence of CheYp but not CheY makes likely the hypothesis that CheC-CheD-CheY interact as part of a negative feedback pathway during adaptation. Last, the interaction between CheD and chemoreceptor McpC was studied in order to better understand the role of CheD in adaptation. Results showed that Q304 and Q305 on McpC are essential to recruit CheD. Additionally, the reduced levels of CheD in mcpC (Q304A) or (Q305A) mutants suggested that the dynamic interaction between CheD and receptors is vital to maintain the normal CheD level. These findings suggest more complicated roles of CheD than its previously identified function as a receptor deamidase, and will lead to a clearer picture of the coordination of the three adaptational systems in the B. subtilis chemotactic sensory transduction system.
Resumo:
The current study investigated the cognitive workload of sentence and clause wrap-up in younger and older readers. A large number of studies have demonstrated the presence of wrap-up effects, peaks in processing time at clause and sentence boundaries that some argue reflect attention to organizational and integrative semantic processes. However, the exact nature of these wrap-up effects is still not entirely clear, with some arguing that wrap-up is not related to processing difficulty, but rather is triggered by a low-level oculomotor response or the implicit monitoring of intonational contour. The notion that wrap-up effects are resource-demanding was directly tested by examining the degree to which sentence and clause wrap-up affects the parafoveal preview benefit. Older and younger adults read passages in which a target word N occurred in a sentence-internal, clause-final, or sentence-final position. A gaze-contingent boundary change paradigm was used in which, on some trials, a non-word preview of word N+1 was replaced by a target word once the eyes crossed an invisible boundary located between words N and N+1. All measures of reading time on word N were longer at clause and sentence boundaries than in the sentence-internal position. In the earliest measures of reading time, sentence and clause wrap-up showed evidence of reducing the magnitude of the preview benefit similarly for younger and older adults. However, this effect was moderated by age in gaze duration, such that older adults showed a complete reduction in the preview benefit in the sentence-final condition. Additionally, sentence and clause wrap-up were negatively associated with the preview benefit. Collectively, the findings from the current study suggest that wrap-up is cognitively demanding and may be less efficient with age, thus, resulting in a reduction of the parafoveal preview during normal reading.