3 resultados para post-embrionic development

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stakeholder participation is widely acknowledged as a critical component of post-disaster recovery because it helps create a shared understanding of local hazard risk and vulnerability, improves recovery and mitigation decision efficacy, and builds social capital and local resilience to future disasters. But approaches commonly used to facilitate participation and empower local communities depend on lengthy consensus-building processes which is not conducive to time-constrained post-disaster recovery. Moreover, these approaches are often criticized for being overly technocratic and ignoring existing community power and trust structures. Therefore, there is a need for more nuanced, analytical and applied research on stakeholder participation in planning for post-disaster recovery. This research examines participatory behavior of three stakeholder groups (government agencies, non-local non-government organizations, local community-based organizations) in three coastal village communities of Nagapattinam (India) that were recovering from the 2004 Indian Ocean tsunami. The study found eight different forms of participation and non-participation in the case study communities, ranging from 'transformative' participation to 'marginalized' non-participation. These forms of participation and non-participatory behavior emanated from the negotiation of four factors, namely stakeholder power, legitimacy, trust, and urgency for action. The study also found that the time constraints and changing conditions of recovery pose particular challenges for how these factors operated on the ground and over the course of recovery. Finally, the study uses these insights to suggest four strategies for recovery managers to use in the short- and long-term to facilitate more effective stakeholder participation in post-disaster recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk contains numerous bioactive substances including immunoglobulins, cytokines, growth factors and components that exert antibiotic and prebiotic activity (Field, 2005). Little is known about the biological effects of individual milk bioactives, despite the fact that natural milk improves intestinal development and immune system functions in neonates (Donovan et al., 1994; Field, 2005) relative to milk formula. Characterization of the biological effects of such components is important for optimal production of infant milk formulas to be used when mother’s milk is not available. Milk components with preliminary evidence of positive effects on the intestinal growth and mucosal immunity include osteopontin (OPN). Osteopontin is a phosphorylated acidic glycoprotein expressed by a number of different immune and non-immune cells and tissues (Sodek et al., 2000). It is also present in body fluids including blood, bile and milk (Sodek et al., 2000). Osteopontin is a multifunctional protein that is implicated in a wide number of biological processes including cell survival, bone remodeling, and immune modulatory functions (Sodek et al., 2000). Furthermore, Schack and colleagues (2009) demonstrated that the concentration of OPN in human milk is considerably higher than in bovine milk and infant formulas. Taken together, it is likely that OPN plays a role in the early development of gastrointestinal tract and mucosal immune responses in infants. Since the neonatal pig shares anatomical, physiological, immunological, and metabolic similarities with the human infants (Moughan, et al., 1992), they were selected as the animal model in our studies. Our first aim was to investigate the effects of OPN on piglet intestinal development. Newborn, colostrum-deprived piglets (n=27) were randomized to receive three treatments: formula with bovine OPN (OPN; 140 mg/L); formula alone (FF); or sow reared (SR) for 21 days. Body weight, intestinal weight and length, mucosal protein and DNA content, disaccharidase activity, villus morphology, and crypt cell proliferation were measured. Statistical significance was assigned at P<0.05. No significant effects of OPN were observed for body weight, intestinal weight and length. Mucosal protein content of SR piglets was lower than FF and OPN piglets in the duodenum, but higher than FF and OPN piglets in the ileum. No significant effects of diet in mucosal DNA content were detected for the three regions of the small intestine. Lactase and sucrase activities of SR piglets were higher than the two formula-fed groups in the duodenum, lower in the ileum. No significant effects of diet on lactase and sucrase activities were noted between two formula-fed groups in the duodenum and ileum. Jejunal lactase activity of FF piglets was higher than SR piglets, whereas no significant effect of diet was observed in jejunal sucrase activity among the three groups. Duodenal and ileal villus height and villus area of SR piglets were lower than two formula-fed groups, while OPN piglets did not differ from FF piglets. There was a significant effect of diet (P<0.0001) on jejunal crypt cell proliferation, with proliferation in OPN piglets being intermediate between that of FF and SR. In summary, supplemental OPN increased jejunal crypt cell proliferation, independent of evident morphological growth, and had a minor impact on disaccharidase activity in the small intestine of neonatal piglets. Rotavirus (RV) is the most common viral cause of severe gastroenteritis in infants and young children worldwide (Parashar et al., 2006). Maeno et al. (2009) reported that OPN knockout (OPN-KO) suckling mice were more susceptible to RV infection compared to wild-type (WT) suckling mice. To detect the role of OPN in intestinal immune responses of neonates, the goal of the second study was to evaluate whether supplemental OPN influenced the serum antibody responses to RV vaccination in neonatal piglets. Newborn, colostrum-deprived piglets were randomized into two dietary groups: formula with bovine OPN (OPN; 140 mg/L) and formula alone (FF) for 35 days. On d7, piglets in each dietary group were further randomized to receive rotavirus (RV) vaccination (Rotarix®) (FF+RV and OPN+RV) or remained non-vaccinated (FF+NV and OPN+NV). Booster vaccination was provided on d14. Blood samples were collected on d7, 14, 21, 28 and 35. RV-specific serum immunoglobulin (Ig) G, IgA, IgM and total serum IgG, IgA, IgM were measured by ELISA. Statistical significance was assigned at P<0.05, with trends reported as P<0.10. Body weight gain was unaffected by diet and/or vaccination. No significant effect of oral OPN supplementation was observed for RV-specific antibody responses and total Igs levels. After the combination of dietary groups, RV piglets had significantly higher RV-specific IgM concentrations compared to NV piglets. Although there were higher means of RV-specific IgG and RV-specific IgA concentrations in RV group than their counterparts in NV group, the difference did not reach statistical significance. RV-specific IgM reached a peak at d7 post booster vaccination (PBV), whereas the RV-specific IgG and IgA peaked later at PBV 14 or 21. Total Igs were unaffected by RV vaccination but were significantly increased over time, following similar pattern as RV-specific Igs. In summary, neonatal piglets generated weak antibody responses to RV vaccination. Supplemental OPN did not enhance RV-specific serum antibody responses and total serum Igs levels in neonatal piglets with or without RV vaccination. In conclusion, we observed normal developmental changes in the small intestine and serum Igs levels in neonatal piglets over time. Oral OPN supplementation showed minimal impacts on intestinal development and no effect on serum Igs levels. The role of supplemental OPN on the growth and development of infants is still inconclusive. Future studies should measure other physiological and immunological parameters by using different models of vaccination or infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the greatest sources of biologically active compounds is natural products. Often these compounds serve as platforms for the design and development of novel drugs and therapeutics. The overwhelming amount of genomic information acquired in recent years has revealed that ribosomally synthesized and post-translationally modified natural products are much more widespread than originally anticipated. Identified in nearly all forms of life, these natural products display incredible structural diversity and possess a wide range of biological functions that include antimicrobial, antiviral, anti-inflammatory, antitumor, and antiallodynic activities. The unique pathways taken to biosynthesize these compounds offer exciting opportunities for the bioengineering of these complex molecules. The studies described herein focus on both the mode of action and biosynthesis of antimicrobial peptides. In Chapter 2, it is demonstrated that haloduracin, a recently discovered two-peptide lantibiotic, possesses nanomolar antimicrobial activity against a panel of bacteria strains. The potency of haloduracin rivals that of nisin, an economically and therapeutically relevant lantibiotic, which can be attributed to a similar dual mode of action. Moreover, it was demonstrated that this lantibiotic of alkaliphile origin has better stability at physiological pH than nisin. The molecular target of haloduracin was identified as the cell wall peptidoglycan precursor lipid II. Through the in vitro biosynthesis of haloduracin, several analogues of Halα were prepared and evaluated for their ability to inhibit peptidoglycan biosynthesis as well as bacterial cell growth. In an effort to overcome the limitations of in vitro biosynthesis strategies, a novel strategy was developed resulting in a constitutively active lantibiotic synthetase enzyme. This methodology, described in Chapter 3, enabled the production of fully-modified lacticin 481 products with proteinogenic and non-proteinogenic amino acid substitutions. A number of lacticin 481 analogues were prepared and their antimicrobial activity and ability to bind lipid II was assessed. Moreover, site-directed mutagenesis of the constitutively active synthetase resulted in a kinase-like enzyme with the ability to phosphorylate a number of peptide substrates. The hunt for a lantibiotic synthetase enzyme responsible for installing the presumed dehydro amino acids and a thioether ring in the natural product sublancin, led to the identification and characterization of a unique post-translational modification. The studies described in Chapter 4, demonstrate that sublancin is not a lantibiotic, but rather an unusual S-linked glycopeptide. Its structure was revised based on extensive chemical, biochemical, and spectroscopic characterization. In addition to structural investigation, bioinformatic analysis of the sublancin gene cluster led to the identification of an S-glycosyltransferase predicted to be responsible for the post-translational modification of the sublancin precursor peptide. The unprecedented glycosyltransferase was reconstituted in vitro and demonstrated remarkable substrate promiscuity for both the NDP-sugar co-substrate as well as the precursor peptide itself. An in vitro method was developed for the production of sublancin and analogues which were subsequently evaluated in bioactivity assays. Finally, a number of putative biosynthetic gene clusters were identified that appear to harbor the necessary genes for production of an S-glycopeptide. An additional S-glycosyltransferase with more favorable intrinsic properties including better expression, stability, and solubility was reconstituted in vitro and demonstrated robust catalytic abilities.