2 resultados para pacs: simulation techniques

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental step in understanding the effects of irradiation on metallic uranium and uranium dioxide ceramic fuels, or any material, must start with the nature of radiation damage on the atomic level. The atomic damage displacement results in a multitude of defects that influence the fuel performance. Nuclear reactions are coupled, in that changing one variable will alter others through feedback. In the field of fuel performance modeling, these difficulties are addressed through the use of empirical models rather than models based on first principles. Empirical models can be used as a predictive code through the careful manipulation of input variables for the limited circumstances that are closely tied to the data used to create the model. While empirical models are efficient and give acceptable results, these results are only applicable within the range of the existing data. This narrow window prevents modeling changes in operating conditions that would invalidate the model as the new operating conditions would not be within the calibration data set. This work is part of a larger effort to correct for this modeling deficiency. Uranium dioxide and metallic uranium fuels are analyzed through a kinetic Monte Carlo code (kMC) as part of an overall effort to generate a stochastic and predictive fuel code. The kMC investigations include sensitivity analysis of point defect concentrations, thermal gradients implemented through a temperature variation mesh-grid, and migration energy values. In this work, fission damage is primarily represented through defects on the oxygen anion sublattice. Results were also compared between the various models. Past studies of kMC point defect migration have not adequately addressed non-standard migration events such as clustering and dissociation of vacancies. As such, the General Utility Lattice Program (GULP) code was utilized to generate new migration energies so that additional non-migration events could be included into kMC code in the future for more comprehensive studies. Defect energies were calculated to generate barrier heights for single vacancy migration, clustering and dissociation of two vacancies, and vacancy migration while under the influence of both an additional oxygen and uranium vacancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The incorporation of graphitic compounds such as carbon nanotubes (CNTs) and graphene into nano-electronic device packaging holds much promise for waste heat management given their high thermal conductivities. However, as these graphitic materials must be used in together with other semiconductor/insulator materials, it is not known how thermal transport is affected by the interaction. Using different simulation techniques, in this thesis, we evaluate the thermal transport properties - thermal boundary conductance (TBC) and thermal conductivity - of CNTs and single-layer graphene in contact with an amorphous SiO2 (a-SiO2) substrate. First, the theoretical methodologies and concepts used in our simulations are presented. In particular, two concepts are described in detail as they are necessary for the understanding of the subsequent chapters. The first is the linear response Green-Kubo (GK) theory of thermal boundary conductance (TBC), which we develop in this thesis, and the second is the spectral energy density method, which we use to directly compute the phonon lifetimes and thermal transport coefficients. After we set the conceptual foundations, the TBC of the CNT-SiO2 interface is computed using non- equilibrium molecular dynamics (MD) simulations and the new Green-Kubo method that we have developed. Its dependence on temperature, the strength of the interaction with the substrate, and tube diameter are evaluated. To gain further insight into the phonon dynamics in supported CNTs, the scattering rates are computed using the spectral energy density (SED) method. With this method, we are able to distinguish the different scattering mechanisms (boundary and CNT-substrate phonon-phonon) and rates. The phonon lifetimes in supported CNTs are found to be reduced by contact with the substrate and we use that lifetime reduction to determine the change in CNT thermal conductivity. Next, we examine thermal transport in graphene supported on SiO2. The phonon contribution to the TBC of the graphene-SiO2 interface is computed from MD simulations and found to agree well with experimentally measured values. We derive the theory of remote phonon scattering of graphene electrons and compute the heat transfer coefficient dependence on doping level and temperature. The thermal boundary conductance from remote phonon scattering is found to be an order of magnitude smaller than that of the phonon contribution. The in-plane thermal conductivity of supported graphene is calculated from MD simulations. The experimentally measured order of magnitude reduction in thermal conductivity is reproduced in our simulations. We show that this reduction is due to the damping of the flexural (ZA) modes. By varying the interaction between graphene and the substrate, the ZA modes hybridize with the substrate Rayleigh modes and the dispersion of the hybridized modes is found to linearize in the strong coupling limit, leading to an increased thermal conductance in the composite structure.