2 resultados para pacs: information technolgy applications

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

30.00% 30.00%

Publicador:

Resumo:

My thesis consists of three essays that investigate strategic interactions between individuals engaging in risky collective action in uncertain environments. The first essay analyzes a broad class of incomplete information coordination games with a wide range of applications in economics and politics. The second essay draws from the general model developed in the first essay to study decisions by individuals of whether to engage in protest/revolution/coup/strike. The final essay explicitly integrates state response to the analysis. The first essay, Coordination Games with Strategic Delegation of Pivotality, exhaustively analyzes a class of binary action, two-player coordination games in which players receive stochastic payoffs only if both players take a ``stochastic-coordination action''. Players receive conditionally-independent noisy private signals about the normally distributed stochastic payoffs. With this structure, each player can exploit the information contained in the other player's action only when he takes the “pivotalizing action”. This feature has two consequences: (1) When the fear of miscoordination is not too large, in order to utilize the other player's information, each player takes the “pivotalizing action” more often than he would based solely on his private information, and (2) best responses feature both strategic complementarities and strategic substitutes, implying that the game is not supermodular nor a typical global game. This class of games has applications in a wide range of economic and political phenomena, including war and peace, protest/revolution/coup/ strike, interest groups lobbying, international trade, and adoption of a new technology. My second essay, Collective Action with Uncertain Payoffs, studies the decision problem of citizens who must decide whether to submit to the status quo or mount a revolution. If they coordinate, they can overthrow the status quo. Otherwise, the status quo is preserved and participants in a failed revolution are punished. Citizens face two types of uncertainty. (a) non-strategic: they are uncertain about the relative payoffs of the status quo and revolution, (b) strategic: they are uncertain about each other's assessments of the relative payoff. I draw on the existing literature and historical evidence to argue that the uncertainty in the payoffs of status quo and revolution is intrinsic in politics. Several counter-intuitive findings emerge: (1) Better communication between citizens can lower the likelihood of revolution. In fact, when the punishment for failed protest is not too harsh and citizens' private knowledge is accurate, then further communication reduces incentives to revolt. (2) Increasing strategic uncertainty can increase the likelihood of revolution attempts, and even the likelihood of successful revolution. In particular, revolt may be more likely when citizens privately obtain information than when they receive information from a common media source. (3) Two dilemmas arise concerning the intensity and frequency of punishment (repression), and the frequency of protest. Punishment Dilemma 1: harsher punishments may increase the probability that punishment is materialized. That is, as the state increases the punishment for dissent, it might also have to punish more dissidents. It is only when the punishment is sufficiently harsh, that harsher punishment reduces the frequency of its application. Punishment Dilemma 1 leads to Punishment Dilemma 2: the frequencies of repression and protest can be positively or negatively correlated depending on the intensity of repression. My third essay, The Repression Puzzle, investigates the relationship between the intensity of grievances and the likelihood of repression. First, I make the observation that the occurrence of state repression is a puzzle. If repression is to succeed, dissidents should not rebel. If it is to fail, the state should concede in order to save the costs of unsuccessful repression. I then propose an explanation for the “repression puzzle” that hinges on information asymmetries between the state and dissidents about the costs of repression to the state, and hence the likelihood of its application by the state. I present a formal model that combines the insights of grievance-based and political process theories to investigate the consequences of this information asymmetry for the dissidents' contentious actions and for the relationship between the magnitude of grievances (formulated here as the extent of inequality) and the likelihood of repression. The main contribution of the paper is to show that this relationship is non-monotone. That is, as the magnitude of grievances increases, the likelihood of repression might decrease. I investigate the relationship between inequality and the likelihood of repression in all country-years from 1981 to 1999. To mitigate specification problem, I estimate the probability of repression using a generalized additive model with thin-plate splines (GAM-TPS). This technique allows for flexible relationship between inequality, the proxy for the costs of repression and revolutions (income per capita), and the likelihood of repression. The empirical evidence support my prediction that the relationship between the magnitude of grievances and the likelihood of repression is non-monotone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Functional nucleic acids (FNA), including nucleic acids catalysts (ribozymes and DNAzymes) and ligands (aptamers), have been discovered in nature or isolated in a laboratory through a process called in vitro selection. They are nucleic acids with functions similar to protein enzymes or antibodies. They have been developed into sensors with high sensitivity and selectivity; it is realized by converting the reaction catalyzed by a DNAzyme/ribozyme or the binding event of an aptamer to a fluorescent, colorimetric or electrochemical signal. While a number of studies have been reported for in vitro sensing using DNAzymes or aptamers, there are few reports on in vivo sensing or imaging. MRI is a non-invasive imaging technique; smart MRI contrast agents were synthesized for molecular imaging purposes. However, their rational design remains a challenge due to the difficulty to predict molecular interactions. Chapter 2 focuses on rational design of smart T1-weighted MRI contrast agents with high specificity based on DNAzymes and aptamers. It was realized by changing the molecular weight of the gadolinium conjugated DNA strand with the analytes, which lead to analyte-specific water proton relaxation responses and contrast changes on an MRI image. The designs are general; the high selectivity of FNA was retained. Most FNA-based fluorescent sensors require covalent labeling of fluorophore/quencher to FNAs, which incurrs extra expenses and could interfere the function of FNAs. Chapter 3 describes a new sensor design avoiding the covalent labeling of fluorophore and quencher. The fluorescence of malachite green (MG) was regulated by the presence of adenosine. Conjugate of aptamers of MG and adenosine and a bridge strand were annealed in a solution containing MG. The MG aptamer did not bind MG because of its hybridization to the bridge strand, resulting in low fluorescence signal of MG. The hybridization was weakened in the presence of adenosine, leading to the binding of MG to its aptamer and a fluorescence increase. The sensor has comparable detection limit (20 micromolar) and specificity to its labeled derivatives. Enzymatic activity of most DNAzymes requires metal cations. The research on the metal-DNAzyme interaction is of interest and challenge to scientists because of the lack of structural information. Chapters 4 presents the research on the characterization of the interaction between a Cu2+-dependent DNAzyme and Cu2+. Electron paramagnetic resonance (EPR) and UV-Vis spectroscopy were used to probe the binding of Cu2+ to the DNAzyme; circular dichroism was used to probe the conformational change of the DNAzyme induced by Cu2+. It was proposed that the conformational change by the Cu2+ binding is important for the activity of the DNAzyme. Chapter 5 reports the dependence of the activity of 8-17 DNAzyme on the presence of both Pb2+ and other metal cations including Zn2+, Cd2+ and Mg2+. It was discovered that presence of those metal cations can be cooperative or inhibitive to 8-17 activity. It is hypothesized that the 8-17 DNAzyme had multiple binding sites for metal cations based on the results. Cisplatin is effective killing tumor cells, but with significant side effects, which can be minimized by its targeted delivery. Chapter 6 focuses on the effort to functionalize liposomes encapsulating cisplatin by an aptamer that selectively bind nucleolin, an overexpressed protein by breast cancer cells. The study proved the selective cytotoxicity to breast cancer cells of the aptamer-functionalized liposome.