3 resultados para open-ended photothermal cell

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a long-term study of the use of information and communication technologies by 30 older adults (ages 70–97) living in a large retirement community. The study spanned the years of 1996 to 2008, during which time the research participants grappled with the challenges of computer use while aging 12 years. The researcher, herself a ‘mature learner,’ used a qualitative research design which included observations and open-ended interviews. Using a strategy of “intermittent immersion,” she spent an average of two weeks per visit on site and participated in the lives of the research population in numerous ways, including service as their computer tutor. With e-mail and telephone contact, she was able to continue her interactions with participants throughout the 12-year period. A long-term perspective afforded the view of the evolution, devolution or cessation of the technology use by these older adults, and this process is chronicled in detail through five individual “profiles.” Three research questions dominated the inquiry: What function do computers serve in the lives of older adults? Does computer use foster or interfere with social ties? Is social support necessary for success in the face of challenging learning tasks? In answer to the first question, it became clear that computers were valued as a symbol of competence and intelligence. Some individuals brought their computers with them when transferred to the single-room residences of assisted living or nursing care facilities. Even when use had ceased, their computers were displayed to signal that their owners were or had once been keeping up to date. In answer to the second question, computer owners socialized around computing use (with in-person family members or friends) more than, or as much as, they socialized through their computers in the digital realm of the Internet. And in answer to the third question, while the existence of social support did facilitate computer exploration, more important was the social support network generated and developed among fellow computer users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to identify the structural pathways of personal cognition and social context as they influence knowledge sharing behaviors in communities of practice. Based on the existing literature, ten hypotheses and a conceptual model built on the basis of the social cognitive theory were developed regarding the interrelationships of the five constructs: self-efficacy for knowledge sharing, outcome expectations, sense of community, leadership of a community, and knowledge sharing. The data were collected through an online questionnaire from the employees who have participated in communities of practice in a Fortune 100 corporation. A total of 438 usable questionnaires were collected. Overall, three analyses were conducted in order to prove the given hypotheses: (a) hypothesized measurement model fit, (b) relational and influential associations among the constructs, and (c) structural equation model analysis (SEM). In addition, open-ended responses were analyzed. The results presented that (a) hypothesized measurement models were valid and reliable, (b) personal cognitive factors, self-efficacy and outcome expectations for knowledge sharing, were found to be significant predictors of community members’ sense of community and knowledge sharing behaviors, (c) sense of community had the most significant impact on the knowledge sharing, (d) as the perceived social context, sense of community mediated the effects of personal cognition on knowledge sharing behaviors, and (e) personal cognition and social context jointly contributed to knowledge sharing. In brief, all of the hypotheses were positively supported. A conclusive summary is provided along with contributive discussion. Implications and contributions to HRD researchers and practitioners are discussed, and recommendations are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.