3 resultados para non-native species

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chionanthus pygmaeus Small (pygmy fringetree) (Oleaceae) is an endemic and rare Florida species, which has an attractive, small habit giving it great potential for use in managed landscapes. Members of the genus Chionanthus are difficult to propagate via cuttings and possess complex seed dormancies that are not well understood. Conservation of pygmy fringetree and its potential for commercial propagation for use in managed landscapes is contingent on a better understanding of its complex seed dormancy and enhancement of its propagation. I conducted two experiments to assess sexual and asexual propagation methods for pygmy fringetree. The first experiment was conducted to determine what factors are involved in overcoming seed dormancy. Various scarification treatments, which mimicked conditions seeds are exposed to in the wild, were investigated to determine their effects on germination of 20-year-old seeds originally collected from the species’ native range. Treatments included endocarp removal, sulfuric acid, boiling-water, and smoke-water treatments. Prior to treatment initiation, seed viability was estimated to be 12%. Treated seeds went through two cold- and two warm-stratification periods of 4°C and 25°C, respectively, in a dark growth chamber. After 180 days, none of the treatments induced early germination. Seeds were then tested for viability, which was 11%. Seed dormancy of the species is apparently complex, allowing some of the seeds to retain some degree of viability, but without dormancy requirements satisfied. The second experiment was conducted to assess if pygmy fringetree could be successfully propagated via hardwood or root cuttings if the appropriate combination of environmental conditions and hormones were applied. Hardwood and root cuttings were treated with either 1000 ppm IBA talc, 8000 ppm IBA talc, or inert talc. All cuttings were placed on a mist bench in a greenhouse for 9 weeks. Hardwood cuttings were supplemented with bottom heat at 24 °C. No treatments were successful in inducing adventitious root formation. I conclude that pygmy fringetree seeds possess complex dormancy that was not able to be overcome by the treatments utilized. However, this result is confounded by the age of the seeds used in the experiment. I also conclude that vegetative propagation of pygmy fringetree is highly dependent on the time of year cuttings are harvested. Further research of both seed and asexual propagation methods need to be explored before pygmy fringetree can be propagated on a commercial scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation investigates the acquisition of oblique relative clauses in L2 Spanish by English and Moroccan Arabic speakers in order to understand the role of previous linguistic knowledge and its interaction with Universal Grammar on the one hand, and the relationship between grammatical knowledge and its use in real-time, on the other hand. Three types of tasks were employed: an oral production task, an on-line self-paced grammaticality judgment task, and an on-line self-paced reading comprehension task. Results indicated that the acquisition of oblique relative clauses in Spanish is a problematic area for second language learners of intermediate proficiency in the language, regardless of their native language. In particular, this study has showed that, even when the learners’ native language shares the main properties of the L2, i.e., fronting of the obligatory preposition (Pied-Piping), there is still room for divergence, especially in production and timed grammatical intuitions. On the other hand, reaction time data have shown that L2 learners can and do converge at the level of sentence processing, showing exactly the same real-time effects for oblique relative clauses that native speakers had. Processing results demonstrated that native and non-native speakers alike are able to apply universal processing principles such as the Minimal Chain Principle (De Vincenzi, 1991) even when the L2 learners still have incomplete grammatical representations, a result that contradicts some of the predictions of the Shallow Structure Hypothesis (Clahsen & Felser, 2006). Results further suggest that the L2 processing and comprehension domains may be able to access some type of information that it is not yet available to other grammatical modules, probably because transfer of certain L1 properties occurs asymmetrically across linguistic domains. In addition, this study also explored the Null-Prep phenomenon in L2 Spanish, and proposed that Null-Prep is an interlanguage stage, fully available and accounted within UG, which intermediate L2 as well as first language learners go through in the development of pied-piping oblique relative clauses. It is hypothesized that this intermediate stage is the result of optionality of the obligatory preposition in the derivation, when it is not crucial for the meaning of the sentence, and when the DP is going to be in an A-bar position, so it can get default case. This optionality can be predicted by the Bottleneck Hypothesis (Slabakova, 2009c) if we consider that these prepositions are some sort of functional morphology. This study contributes to the field of SLA and L2 processing in various ways. First, it demonstrates that the grammatical representations may be dissociated from grammatical processing in the sense that L2 learners, unlike native speakers, can present unexpected asymmetries such as a convergent processing but divergent grammatical intuitions or production. This conclusion is only possible under the assumption of a modular language system. Finally, it contributes to the general debate of generative SLA since in argues for a fully UG-constrained interlanguage grammar.