2 resultados para negative feedback
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Abstract The two-component based chemotaxis signal transduction system allows flagellated bacteria to sense their surrounding chemical environment and move towards more favorable conditions. The attractant signals can be sensed by transmembrane chemoreceptors, and then transmitted to the histidine kinase CheA. Once activated, CheA interacts with the response regulator CheY through phosphorelay, which causes a change in the rotation of the flagella. The direction of flagella rotation determines whether a cell swims straight or just tumbles. Cells also need adaptation to respond to a change in chemical concentrations, and return to their prestimulated level. Adaptation in the B. subtilis chemotaxis system is achieved by three coordinated systems: the methylation system, the CheC/CheD/CheY-p system and the CheV system. CheD, the previously identified receptor deamidase, was shown to be critical to the ability of B. subtilis to perform chemotaxis and is the main focus of this study. This study started from characterization of the enzymatic mechanism of CheD. Results showed that CheD deamidase uses a cysteine hydrolase mechanism. The catalytic triad consisting of Cys33-His50-Thr27, and Ser27 is essential for receptor recognition and binding. In addition, in this study CheC was found to inhibit CheD’s deamidase activity. Through mutant screening, Phe102 on CheD was found to be the essential site to interact with CheC. Furthermore, the CheD/CheC interaction is necessary for the robust chemotaxis in vivo as demonstrated by the cheD (F102E) mutant, which lacks the ability to swim on swarm plates. Despite its deamidase activity, we hypothesized that CheD’s main role is its involvement in the CheD-CheC-CheY-p negative feedback pathway during adaptation. In particular, CheD is likely to help stabilize the transient kinase-activating state through binding to receptors. When CheY-p level is increased, CheC-CheY-p complex may attract CheD away from receptors. In this study, CheC-CheD binding kinetics with CheY or CheYp presence was successfully obtained by a series of SPR experiments. The increased affinity of CheD for CheC in presence of CheYp but not CheY makes likely the hypothesis that CheC-CheD-CheY interact as part of a negative feedback pathway during adaptation. Last, the interaction between CheD and chemoreceptor McpC was studied in order to better understand the role of CheD in adaptation. Results showed that Q304 and Q305 on McpC are essential to recruit CheD. Additionally, the reduced levels of CheD in mcpC (Q304A) or (Q305A) mutants suggested that the dynamic interaction between CheD and receptors is vital to maintain the normal CheD level. These findings suggest more complicated roles of CheD than its previously identified function as a receptor deamidase, and will lead to a clearer picture of the coordination of the three adaptational systems in the B. subtilis chemotactic sensory transduction system.
Resumo:
The transistor laser is a unique three-port device that operates simultaneously as a transistor and a laser. With quantum wells incorporated in the base regions of heterojunction bipolar transistors, the transistor laser possesses advantageous characteristics of fast base spontaneous carrier lifetime, high differential optical gain, and electrical-optical characteristics for direct “read-out” of its optical properties. These devices have demonstrated many useful features such as high-speed optical transmission without the limitations of resonance, non-linear mixing, frequency multiplication, negative resistance, and photon-assisted switching. To date, all of these devices operate as multi-mode lasers without any type of wavelength selection or stabilizing mechanisms. Stable single-mode distributed feedback diode laser sources are important in many applications including spectroscopy, as pump sources for amplifiers and solid-state lasers, for use in coherent communication systems, and now as TLs potentially for integrated optoelectronics. The subject of this work is to expand the future applications of the transistor laser by demonstrating the theoretical background, process development and device design necessary to achieve singlelongitudinal- mode operation in a three-port transistor laser. A third-order distributed feedback surface grating is fabricated in the top emitter AlGaAs confining layers using soft photocurable nanoimprint lithography. The device produces continuous wave laser operation with a peak wavelength of 959.75 nm and threshold current of 13 mA operating at -70 °C. For devices with cleaved ends a side-mode suppression ratio greater than 25 dB has been achieved.