2 resultados para long-run dynamics

em Illinois Digital Environment for Access to Learning and Scholarship Repository


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microsecond long Molecular Dynamics (MD) trajectories of biomolecular processes are now possible due to advances in computer technology. Soon, trajectories long enough to probe dynamics over many milliseconds will become available. Since these timescales match the physiological timescales over which many small proteins fold, all atom MD simulations of protein folding are now becoming popular. To distill features of such large folding trajectories, we must develop methods that can both compress trajectory data to enable visualization, and that can yield themselves to further analysis, such as the finding of collective coordinates and reduction of the dynamics. Conventionally, clustering has been the most popular MD trajectory analysis technique, followed by principal component analysis (PCA). Simple clustering used in MD trajectory analysis suffers from various serious drawbacks, namely, (i) it is not data driven, (ii) it is unstable to noise and change in cutoff parameters, and (iii) since it does not take into account interrelationships amongst data points, the separation of data into clusters can often be artificial. Usually, partitions generated by clustering techniques are validated visually, but such validation is not possible for MD trajectories of protein folding, as the underlying structural transitions are not well understood. Rigorous cluster validation techniques may be adapted, but it is more crucial to reduce the dimensions in which MD trajectories reside, while still preserving their salient features. PCA has often been used for dimension reduction and while it is computationally inexpensive, being a linear method, it does not achieve good data compression. In this thesis, I propose a different method, a nonmetric multidimensional scaling (nMDS) technique, which achieves superior data compression by virtue of being nonlinear, and also provides a clear insight into the structural processes underlying MD trajectories. I illustrate the capabilities of nMDS by analyzing three complete villin headpiece folding and six norleucine mutant (NLE) folding trajectories simulated by Freddolino and Schulten [1]. Using these trajectories, I make comparisons between nMDS, PCA and clustering to demonstrate the superiority of nMDS. The three villin headpiece trajectories showed great structural heterogeneity. Apart from a few trivial features like early formation of secondary structure, no commonalities between trajectories were found. There were no units of residues or atoms found moving in concert across the trajectories. A flipping transition, corresponding to the flipping of helix 1 relative to the plane formed by helices 2 and 3 was observed towards the end of the folding process in all trajectories, when nearly all native contacts had been formed. However, the transition occurred through a different series of steps in all trajectories, indicating that it may not be a common transition in villin folding. The trajectories showed competition between local structure formation/hydrophobic collapse and global structure formation in all trajectories. Our analysis on the NLE trajectories confirms the notion that a tight hydrophobic core inhibits correct 3-D rearrangement. Only one of the six NLE trajectories folded, and it showed no flipping transition. All the other trajectories get trapped in hydrophobically collapsed states. The NLE residues were found to be buried deeply into the core, compared to the corresponding lysines in the villin headpiece, thereby making the core tighter and harder to undo for 3-D rearrangement. Our results suggest that the NLE may not be a fast folder as experiments suggest. The tightness of the hydrophobic core may be a very important factor in the folding of larger proteins. It is likely that chaperones like GroEL act to undo the tight hydrophobic core of proteins, after most secondary structure elements have been formed, so that global rearrangement is easier. I conclude by presenting facts about chaperone-protein complexes and propose further directions for the study of protein folding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemotaxis, the phenomenon in which cells move in response to extracellular chemical gradients, plays a prominent role in the mammalian immune response. During this process, a number of chemical signals, called chemoattractants, are produced at or proximal to sites of infection and diffuse into the surrounding tissue. Immune cells sense these chemoattractants and move in the direction where their concentration is greatest, thereby locating the source of attractants and their associated targets. Leading the assault against new infections is a specialized class of leukocytes (white blood cells) known as neutrophils, which normally circulate in the bloodstream. Upon activation, these cells emigrate out of the vasculature and navigate through interstitial tissues toward target sites. There they phagocytose bacteria and release a number of proteases and reactive oxygen intermediates with antimicrobial activity. Neutrophils recruited by infected tissue in vivo are likely confronted by complex chemical environments consisting of a number of different chemoattractant species. These signals may include end target chemicals produced in the vicinity of the infectious agents, and endogenous chemicals released by local host tissues during the inflammatory response. To successfully locate their pathogenic targets within these chemically diverse and heterogeneous settings, activated neutrophils must be capable of distinguishing between the different signals and employing some sort of logic to prioritize among them. This ability to simultaneously process and interpret mulitple signals is thought to be essential for efficient navigation of the cells to target areas. In particular, aberrant cell signaling and defects in this functionality are known to contribute to medical conditions such as chronic inflammation, asthma and rheumatoid arthritis. To elucidate the biomolecular mechanisms underlying the neutrophil response to different chemoattractants, a number of efforts have been made toward understanding how cells respond to different combinations of chemicals. Most notably, recent investigations have shown that in the presence of both end target and endogenous chemoattractant variants, the cells migrate preferentially toward the former type, even in very low relative concentrations of the latter. Interestingly, however, when the cells are exposed to two different endogenous chemical species, they exhibit a combinatorial response in which distant sources are favored over proximal sources. Some additional results also suggest that cells located between two endogenous chemoattractant sources will respond to the vectorial sum of the combined gradients. In the long run, this peculiar behavior could result in oscillatory cell trajectories between the two sources. To further explore the significance of these and other observations, particularly in the context of physiological conditions, we introduce in this work a simplified phenomenological model of neutrophil chemotaxis. In particular, this model incorporates a trait commonly known as directional persistence - the tendency for migrating neutrophils to continue moving in the same direction (much like momentum) - while also accounting for the dose-response characteristics of cells to different chemical species. Simulations based on this model suggest that the efficiency of cell migration in complex chemical environments depends significantly on the degree of directional persistence. In particular, with appropriate values for this parameter, cells can improve their odds of locating end targets by drifting through a network of attractant sources in a loosely-guided fashion. This corroborates the prediction that neutrophils randomly migrate from one chemoattractant source to the next while searching for their end targets. These cells may thus use persistence as a general mechanism to avoid being trapped near sources of endogenous chemoattractants - the mathematical analogue of local maxima in a global optimization problem. Moreover, this general foraging strategy may apply to other biological processes involving multiple signals and long-range navigation.