2 resultados para lenthic water bodies
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Excess nutrient loads carried by streams and rivers are a great concern for environmental resource managers. In agricultural regions, excess loads are transported downstream to receiving water bodies, potentially causing algal blooms, which could lead to numerous ecological problems. To better understand nutrient load transport, and to develop appropriate water management plans, it is important to have accurate estimates of annual nutrient loads. This study used a Monte Carlo sub-sampling method and error-corrected statistical models to estimate annual nitrate-N loads from two watersheds in central Illinois. The performance of three load estimation methods (the seven-parameter log-linear model, the ratio estimator, and the flow-weighted averaging estimator) applied at one-, two-, four-, six-, and eight-week sampling frequencies were compared. Five error correction techniques; the existing composite method, and four new error correction techniques developed in this study; were applied to each combination of sampling frequency and load estimation method. On average, the most accurate error reduction technique, (proportional rectangular) resulted in 15% and 30% more accurate load estimates when compared to the most accurate uncorrected load estimation method (ratio estimator) for the two watersheds. Using error correction methods, it is possible to design more cost-effective monitoring plans by achieving the same load estimation accuracy with fewer observations. Finally, the optimum combinations of monitoring threshold and sampling frequency that minimizes the number of samples required to achieve specified levels of accuracy in load estimation were determined. For one- to three-weeks sampling frequencies, combined threshold/fixed-interval monitoring approaches produced the best outcomes, while fixed-interval-only approaches produced the most accurate results for four- to eight-weeks sampling frequencies.
Resumo:
Sediment oxygen demand (SOD) can be a significant oxygen sink in various types of water bodies, particularly slow-moving waters with substantial organic sediment accumulation. In most settings where SOD is a concern, the prevailing hydraulic conditions are such that the impact of sediment resuspension on SOD is not considered. However, in the case of Bubbly Creek in Chicago, Illinois, the prevailing slack water conditions are interrupted by infrequent intervals of very high flow rates associated with pumped combined sewer overflow (CSO) during intense hydrologic events. These events can cause resuspension of the highly organic, nutrient-rich bottom sediments, resulting in precipitous drawdown of dissolved oxygen (DO) in the water column. While many past studies have addressed the dependence of SOD on near-bed velocity and bed shear stress prior to the point of sediment resuspension, there has been limited research that has attempted to characterize the complex and dynamic phenomenon of resuspended-sediment oxygen demand. To address this issue, a new in situ experimental apparatus referred to as the U of I Hydrodynamic SOD Sampler was designed to achieve a broad range of velocities and associated bed shear stresses. This allowed SOD to be analyzed across the spectrum of no sediment resuspension associated with low velocity/ bed shear stress through full sediment resuspension associated with high velocity / bed shear stress. The current study split SOD into two separate components: (1) SODNR is the sediment oxygen demand associated with non-resuspension conditions and is a surface sink calculated using traditional methods to yield a value with units (g/m2/day); and (2) SODR is the oxygen demand associated with resuspension conditions, which is a volumetric sink most accurately characterized using non-traditional methods and units that reflect suspension in the water column (mg/L/day). In the case of resuspension, the suspended sediment concentration was analyzed as a function of bed shear stress, and a formulation was developed to characterize SODR as a function of suspended sediment concentration in a form similar to first-order biochemical oxygen demand (BOD) kinetics with Monod DO term. The results obtained are intended to be implemented into a numerical model containing hydrodynamic, sediment transport, and water quality components to yield oxygen demand varying in both space and time for specific flow events. Such implementation will allow evaluation of proposed Bubbly Creek water quality improvement alternatives which take into account the impact of SOD under various flow conditions. Although the findings were based on experiments specific to the conditions in Bubbly Creek, the techniques and formulations developed in this study should be applicable to similar sites.