2 resultados para kirkwood superposition approximation
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
This dissertation presents the design of three high-performance successive-approximation-register (SAR) analog-to-digital converters (ADCs) using distinct digital background calibration techniques under the framework of a generalized code-domain linear equalizer. These digital calibration techniques effectively and efficiently remove the static mismatch errors in the analog-to-digital (A/D) conversion. They enable aggressive scaling of the capacitive digital-to-analog converter (DAC), which also serves as sampling capacitor, to the kT/C limit. As a result, outstanding conversion linearity, high signal-to-noise ratio (SNR), high conversion speed, robustness, superb energy efficiency, and minimal chip-area are accomplished simultaneously. The first design is a 12-bit 22.5/45-MS/s SAR ADC in 0.13-μm CMOS process. It employs a perturbation-based calibration based on the superposition property of linear systems to digitally correct the capacitor mismatch error in the weighted DAC. With 3.0-mW power dissipation at a 1.2-V power supply and a 22.5-MS/s sample rate, it achieves a 71.1-dB signal-to-noise-plus-distortion ratio (SNDR), and a 94.6-dB spurious free dynamic range (SFDR). At Nyquist frequency, the conversion figure of merit (FoM) is 50.8 fJ/conversion step, the best FoM up to date (2010) for 12-bit ADCs. The SAR ADC core occupies 0.06 mm2, while the estimated area the calibration circuits is 0.03 mm2. The second proposed digital calibration technique is a bit-wise-correlation-based digital calibration. It utilizes the statistical independence of an injected pseudo-random signal and the input signal to correct the DAC mismatch in SAR ADCs. This idea is experimentally verified in a 12-bit 37-MS/s SAR ADC fabricated in 65-nm CMOS implemented by Pingli Huang. This prototype chip achieves a 70.23-dB peak SNDR and an 81.02-dB peak SFDR, while occupying 0.12-mm2 silicon area and dissipating 9.14 mW from a 1.2-V supply with the synthesized digital calibration circuits included. The third work is an 8-bit, 600-MS/s, 10-way time-interleaved SAR ADC array fabricated in 0.13-μm CMOS process. This work employs an adaptive digital equalization approach to calibrate both intra-channel nonlinearities and inter-channel mismatch errors. The prototype chip achieves 47.4-dB SNDR, 63.6-dB SFDR, less than 0.30-LSB differential nonlinearity (DNL), and less than 0.23-LSB integral nonlinearity (INL). The ADC array occupies an active area of 1.35 mm2 and dissipates 30.3 mW, including synthesized digital calibration circuits and an on-chip dual-loop delay-locked loop (DLL) for clock generation and synchronization.