2 resultados para high-molecular-weight glutenin subunit(HMW-GS)
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Human gene therapy has faced many setbacks due to the immunogenicity and oncogenity of viruses. Safe and efficient alternative gene delivery vehicles are needed to implement gene therapy in clinical practice. Polymeric vectors are an attractive option due to their availability, simple chemistry, and low toxicity and immunogenicity. Our group has previously reported biodegradable polyethylenimines (PEI) that show high transfection efficiency and low toxicity by cross-linking 800 Da PEI with diacrylate cross-linkers using Michael addition. However, the synthesis was difficult to control, inconsistent, and resulted in polymers with a narrow range of molecular weights. In the present work, we utilized a heterogenous PVP(Fe(III)) catalyst to provide a more controllable PEI crosslinking reaction and wider range of biodegradable PEIs. The biodegradable PEIs reported here have molecular weights ranging from 1.2 kDa to 48 kDa, are nontoxic in MDA-MB-231 cells, and show low toxicity in HeLa cells. At their respective optimal polymer:DNA ratios, these biodegradable PEIs demonstrated about 2-5-fold higher transfection efficiency and 2-7-fold higher cellular uptake, compared unmodified 25 kDa PEI. The biodegradable PEIs show similar DNA condensation properties as unmodified PEI but more readily unpackage DNA, based on ethidium bromide exclusion and heparan sulfate competitive displacement assays, which could contribute to their improved transfection efficiency. Overall, the synthesis reported here provides a more robust, controlled reaction to produce cross-linked biodegradable PEIs that show enhanced gene delivery, low toxicity, and high cellular uptake and can potentially be used for future in vivo studies.
Resumo:
The objective of this study is to determine if the effects of a high molecular weight sodium hyaluronate (HA) alone or in combination with triamcinolone acetate (TA) can mitigate chondrocyte proteoglycan catabolism caused by interleukin-1 (IL-1) administration. Chondrocytes were collected from fetlock joints of ten horses euthanized for reasons unrelated to joint disease. Chondrocyte pellets were treated with media (negative control); media containing IL-1 only (positive control); or media containing IL-1 with HA only (0.5 or 2.0 mg/mL), TA only (0.06 or 0.6 mg/mL), or HA (0.5 or 2.0 mg/mL) and TA (0.06 or 0.6 mg/mL) in combination. Chondrocyte pellets were assayed for newly synthesized GAG, total GAG content, total DNA content, and mRNA levels of collagen type II, aggrecan, and COX-2. The high concentration of HA (2.0 mg/mL) increased GAG synthesis while the high concentration of TA (0.6 mg/mL) decreased loss of GAG into the media. Both the high concentration of HA and TA increased the total GAG content within the pellet. There was no change in pellet DNA content with either treatment. TA reduced COX-2 mRNA levels as well as aggrecan and collagen type II expression. Treatment with HA had no effect on mRNA levels of COX-2, aggrecan or collagen type II. These results indicate that the high concentration of HA or TA alone or in combination will mitigate effects of IL-1 administration on proteoglycan catabolism of equine articular chondrocytes.