1 resultado para fixed effects model.
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (8)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Aston University Research Archive (11)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (41)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (79)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (54)
- Collection Of Biostatistics Research Archive (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (35)
- Dalarna University College Electronic Archive (13)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (13)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (4)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (3)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (28)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (285)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (22)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (18)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (5)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (10)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (49)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (4)
- University of Michigan (12)
- University of Queensland eSpace - Australia (34)
- University of Washington (3)
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.