1 resultado para exponential Rosenbrock-type methods
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- University of Cagliari UniCA Eprints (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (55)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (42)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (115)
- Boston University Digital Common (4)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (35)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (17)
- DigitalCommons@The Texas Medical Center (15)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (20)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (22)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Nacional de Saúde de Portugal (2)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (131)
- Queensland University of Technology - ePrints Archive (88)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (83)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (12)
- Université de Montréal, Canada (30)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (8)
- University of Queensland eSpace - Australia (22)
- University of Washington (5)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The recent advent of new technologies has led to huge amounts of genomic data. With these data come new opportunities to understand biological cellular processes underlying hidden regulation mechanisms and to identify disease related biomarkers for informative diagnostics. However, extracting biological insights from the immense amounts of genomic data is a challenging task. Therefore, effective and efficient computational techniques are needed to analyze and interpret genomic data. In this thesis, novel computational methods are proposed to address such challenges: a Bayesian mixture model, an extended Bayesian mixture model, and an Eigen-brain approach. The Bayesian mixture framework involves integration of the Bayesian network and the Gaussian mixture model. Based on the proposed framework and its conjunction with K-means clustering and principal component analysis (PCA), biological insights are derived such as context specific/dependent relationships and nested structures within microarray where biological replicates are encapsulated. The Bayesian mixture framework is then extended to explore posterior distributions of network space by incorporating a Markov chain Monte Carlo (MCMC) model. The extended Bayesian mixture model summarizes the sampled network structures by extracting biologically meaningful features. Finally, an Eigen-brain approach is proposed to analyze in situ hybridization data for the identification of the cell-type specific genes, which can be useful for informative blood diagnostics. Computational results with region-based clustering reveals the critical evidence for the consistency with brain anatomical structure.