3 resultados para experimental measurement
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
The off-cycle refrigerant mass migration has a direct influence on the on-cycle performance since compressor energy is necessary to redistribute the refrigerant mass. No studies, as of today, are available in the open literature which experimentally measured the lubricant migration within a refrigeration system during cycling or stop/start transients. Therefore, experimental procedures measuring the refrigerant and lubricant migration through the major components of a refrigeration system during stop/start transients were developed and implemented. Results identifying the underlying physics are presented. The refrigerant and lubricant migration of an R134a automotive A/C system-utilizing a fixed orifice tube, minichannel condenser, plate and fin evaporator, U-tube type accumulator and fixed displacement compressor-was measured across five sections divided by ball valves. Using the Quick-Closing Valve Technique (QCVT) combined with the Remove and Weigh Technique (RWT) using liquid nitrogen as the condensing agent resulted in a measurement uncertainty of 0.4 percent regarding the total refrigerant mass in the system. The determination of the lubricant mass distribution was achieved by employing three different techniques-Remove and Weigh, Mix and Sample, and Flushing. To employ the Mix and Sample Technique a device-called the Mix and Sample Device-was built. A method to separate the refrigerant and lubricant was developed with an accuracy-after separation-of 0.04 grams of refrigerant left in the lubricant. When applying the three techniques, the total amount of lubricant mass in the system was determined to within two percent. The combination of measurement results-infrared photography and high speed and real time videography-provide unprecedented insight into the mechanisms of refrigerant and lubricant migration during stop-start operation. During the compressor stop period, the primary refrigerant mass migration is caused by, and follows, the diminishing pressure difference across the expansion device. The secondary refrigerant migration is caused by a pressure gradient as a result of thermal nonequilibrium within the system and causes only vapor phase refrigerant migration. Lubricant migration is proportional to the refrigerant mass during the primary refrigerant mass migration. During the secondary refrigerant mass migration lubricant is not migrating. The start-up refrigerant mass migration is caused by an imbalance of the refrigerant mass flow rates across the compressor and expansion device. The higher compressor refrigerant mass flow rate was a result of the entrainment of foam into the U-tube of the accumulator. The lubricant mass migration during the start-up was not proportional to the refrigerant mass migration. The presence of water condensate on the evaporator affected the refrigerant mass migration during the compressor stop period. Caused by an evaporative cooling effect the evaporator held 56 percent of the total refrigerant mass in the system after three minutes of compressor stop time-compared to 25 percent when no water condensate was present on the evaporator coil. Foam entrainment led to a faster lubricant and refrigerant mass migration out of the accumulator than liquid entrainment through the hole at the bottom of the U-tube. The latter was observed for when water condensate was present on the evaporator coil because-as a result of the higher amount of refrigerant mass in the evaporator before start-up-the entrainment of foam into the U-tube of the accumulator ceased before the steady state refrigerant mass distribution was reached.
Resumo:
The prediction of convective heat transfer in enclosures under high ventilative flow rates is primarily of interest for building design and simulation purposes. Current models are based on experiments performed forty years ago with flat plates under natural convection conditions.
Resumo:
The subject of quark transverse spin and transverse momentum distribution are two current research frontier in understanding the spin structure of the nucleons. The goal of the research reported in this dissertation is to extract new information on the quark transversity distribution and the novel transverse-momentum-dependent Sivers function in the neutron. A semi-inclusive deep inelastic scattering experiment was performed at the Hall A of the Jefferson laboratory using 5.9 GeV electron beam and a transversely polarized ^{3}He target. The scattered electrons and the produced hadrons (pions, kaons, and protons) were detected in coincidence with two large magnetic spectrometers. By regularly flipping the spin direction of the transversely polarized target, the single-spin-asymmetry (SSA) of the semi-inclusive deep inelastic reaction ^{3}He^{uparrow}(e,e'h^{\pm})X was measured over the kinematic range 0.13 < x < 0.41 and 1.3 < Q^{2} < 3.1 (GeV)^{2}. The SSA contains several different azimuthal angular modulations which are convolutions of quarks distribution functions in the nucleons and the quark fragmentation functions into hadrons. It is from the extraction of the various ``moments'' of these azimuthal angular distributions (Collins moment and Sivers moment) that we obtain information on the quark transversity distribution and the novel T-odd Sivers function. In this dissertation, I first introduced the theoretical background and experimental status of nucleon spins and the physics of SSA. I will then present the experimental setup and data collection of the JLab E06-010 experiment. Details of data analysis will be discussed next with emphasis on the kaon particle identification and the Ring-Imaging Cherenkov detector which are my major responsibilities in this experiment. Finally, results on the kaon Collins and Sivers moments extracted from the Maximum Likelihood method will be presented and interpreted. I will conclude with a discussion on the future prospects for this research.