2 resultados para cultural ecosystem services
em Illinois Digital Environment for Access to Learning and Scholarship Repository
Resumo:
Ecosystems can provide many services. Wetlands, for example, can help mitigate water pollution from point sources as well as non-point sources, serve as habitat for wildlife, sequester carbon and serve as a place for recreation. Studies have found that these services can have substantial value to society. The sale of ecosystem credits has been found to be a possible way to finance construction investments in wetlands and easements to farmers to take their land out of production. At the same time, selling one ecosystem service credit may not always be enough to justify the investment. Traditionally market participants have only been allowed to sell a single credit from one piece of land, but recently there have been discussions about the possibility of selling more than one credit from a piece of land because it potentially could lead to more efficient ecosystem service provision. Selling multiple credits is sometimes referred to as credit stacking. This paper is an empirical study of the potential for credit stacking applied to the services provided by wetlands in the Upper Mississippi River Basin, specifically nitrogen, phosphorus and wildlife credits. In the setting of our study where costs are discrete rather than continuous we found that wetlands are a cost-effective way to reduce the nitrogen loads from wastewater treatment plants and that stacking nitrogen, phosphorus and wildlife credits may improve social welfare while leading to a higher level of ecosystem services. However, for credit stacking to be welfare improving we found that there needs to be a substantial demand for the credit that covers the majority of the investment in wetlands, while the credit aggregator has a choice between what ecosystem projects to undertake. If the credit that covers the majority of investment is sold first and is the sole basis of the investment decision and the objective is to improve welfare, a sequential implementation of ecosystem credits is not recommended; it would not lead to an increase in the total amount of ecosystem services provided though it would increase profit for the credit producer.
Resumo:
Among insects, which are the most diverse eukaryotic group on earth, Lepidoptera is one of four enormously diverse orders, with approximately 10,000 described species in North America. Within the order, Nearctic “microlepidoptera,” which represent an overwhelmingly large percentage of diversity within the order, remain poorly known despite their ecological importance in many plant communities. In this thesis, I undertook several studies of microlepidoptera diversity in a natural community type (hill prairie) and a managed community type (biofuel feedstock). In two Illinois hill prairies differing in size, latitude, and plant composition, alpha diversity of Pyraloidea and Tortricidae was similar, but the prairies were found to support different sets of species of these moth groups. It is concluded that the similarity in alpha diversity occurs because the larger prairie supports primarily a complement of moth species that feed as larvae on prairie plants (especially species of Asteraceae and Fabaceae), whereas the moths collected in the small prairie represent relatively few prairie-associated species, plus a large component of species that feed as larvae on deciduous trees that surround the prairie. This agrees with the finding of high beta diversity of moths between the sites, which reflects a high level of larval hostplant specificity in most species of Pyraloidea and Tortricidae. Based on published information plus observations made on microlepidoptera collected during the course of this study, 31 families of basal microlepidoptera were reviewed with an aim toward evaluating the likelihood of their including species that are dependent on tallgrass prairie. Of these families, 12 were evaluated as possible, and two as likely or certain, to include prairie-dependent species. In a comparison of moth diversity in light-trap samples from corn, miscanthus, switchgrass, and native prairie, alpha diversity was highest in prairie and was higher in switchgrass than in the other two biofuel crops. Moth species complements generally were similar among the biofuel crops, and prairie shared higher species complementarity with switchgrass than with corn or miscanthus. These findings suggest that large-scale conversion of land to biofuel crops may, to a substantial degree, detrimentally affect arthropod biodiversity, with a resulting loss of valuable arthropod-derived ecosystem services both within the cropping systems and in the surrounding landscape. During the course of this study, rearing efforts yielded two species of moths of the family Gelechiidae, both of which are monophagous leaf feeders on leadplant, Amorpha canescens (Fabaceae). Because these moths are restricted to tallgrass prairie, they are likely to be of interest to conservation biologists. In the interest of naming the moths to facilitate communication regarding them, and to augment our taxonomic knowledge of their respective genera, the moths are described, and diagnoses are provided to differentiate them from similar, related species.